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INTRODUCTION 

The overall goal, of which this paper is a part, is the 
development of a machine-independent data structure 
all~wing rapid processing of data related by arbitrary 
~ssignment such as: the contents of a telephone book, 
h?rary fi~es, census reports, family lineage, graphic 
dIsplays, .Information retrieval systems, networks, etc. 
Data whIch are non-intrinsically related have to be 
expressed (stored) in such a way as to define the way in 
which they are related before any data structure is 
applicable. Since any relation can be expressed in set 
theo~y as a set of ordered pairs and since set theory 
~rovides a wealth of operations for dealing with rela­
~Ions, . a ~et-theoretic data structure appears worth 
InvestIgatIOn. 

A Set-Th~oretic Data Structure (STDS) is a storage 
r~presentatIOn of sets and set operations such that: 
gIven any family of sets 1J and any collection S of set 
operations an STDS is any storage representation which 
is isomorphic to 1J with S. The language used with an 
STDS may contain any set-theoretic expression capable 
o! construction from 1J and S. Every stored representa­
tIOn of a set must preserve all the properties of that set 
and every representation of a particular set must be­
have identically under set operations. 

General 8torage repre8entation 

An STDS is comprised of five structurally indepen-
dent parts: 

1) a collection of set operations S. 
2) a set of datum names (3. 
3) the data: a collection of datum definitions, one for 

each datum name. 
4) a collection of set names 1J. 

5) a collection of set repre~entations, each with a 
name in 1J. 

The storage representation is shown schematically in 

Figure 1. In order for an STDS to be practical the set 
operations must be executed rapidly. If any two sets 
can be well ordered (a linear order with a first element) 
such that their union preserve~ this well-ordering, then 
the subroutines needed for set operations just involve 
a form of merge or, at worst, a binary search of just one 
of the sets: It was shown in another paper! that any set 
defined over {j could be so ordered. Sets are represented 
by blocks of contiguous storage locations with 1J con­
taining names of all the sets. The set (3 is the set of all 
datum names, and is represented by a contiguous block 
of storage locations; the address of a location in the 
(3-block is a datum name and an element of (3. The 
content of a location in the (3-block is the address of a 
stored description of that datum (see Figure 1). The 
contents of the (3-block and the 1J-block are the only 
pointers needed for the operation of an STDS. The 
storage representations of the individual sets do not 
contain pointers to other sets, but contain information 
about datum names. Since each set representation has 
only one pointer associated with it, the set representa­
tion can be moved throughout storage without affect­
ing its contents or the contents of any other set repre­
sentation-only the one pointer in 1J is affected. Up­
dating set representations is virtually trivial. Elements 
to be deleted are replaced by the last element in the set. 
Elements to be added are added to the end of the set 
representation as space allows. When contiguous 
locations are no longer available a new set is formed 
and the element in 1J that referenced the set before it 
was extended now references a location that indicates 
that the set is now the union of two set representations. 
(In a paging structure such sets could be kept on 
the same page.) This demonstrates two different kinds 
of sets in 1J: generator sets and composit~ sets. Only the 
generator set~ have storage representations, the com­
posite sets are unions of generator sets, and the genera­
tor sets are mutually disjoint. Since no duplication of 
storage of sets is necessary and since the set representa-
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tions are kept to a minimum by containing just the 
elements of the sets and no pointers, an STnS is in­
trinsically a minlimal Rtorage representation for arbi­
trarily related data. 

Operation of an STDS 

An STnS relies on set operations to do the work 
usually allocated to pointers or hash-coding as in list 
structures, ring structures, associative structures, and 
relational files. A set operation of S is represented by a 
subroutine which accesses sets through pointers in "'. 
Again it should be stressed that no pointers exist be­
tween sets, hence the set operations S act as the only 
structural ties between sets. Since S will allow any set­
theoretic operation, S will be rich enough that all 
information between sets may be expressed by a set­
theoretic expression generated from the operations of 
S. Any expression establishes which sets are to be ac­
cessed and which operations are to be performed within 
and between these sets; therefore all pages needed for 
completion of an expression are known before the 
expression is executed. Complementing the set opera­
tion subroutines are some strictly storage manipulation 
subroutines. These, however, are not reflected in any 

set-theoretic expression. These routines change storage 
t. 

modes and perform sorts and orderings. A fast sort 
routine has been programmed with execution times as a 
linear function of the number of words to be sorted. 
(On an IBM 7090 this sort ordered 1000 words in 0.35 
seconds and 10,000 words in 3.3 seconds. The nature of 
this sort is such that on an IBM 360/67 it may sort up 
to 60,000 bytes per second. This routine is presently 
being programmed.) Another subroutine which is 
crucial to the operation of an STnS is the tau-ordering 
routine.1 This routine gives a well-ordering which is 
preserved under union. 

Details of f3-block 

The f3-block is a section of contiguous storage loca­
tions with f30 as the address of the head location. The 
first location containing a datum-pointer has the ad­
dress f3o+ 1, and the location of the i-th datum-pointer is 
f3o+i. Let # f3 represent the total number of datum­
pointers, then the last address of the f3-block would be 
f3o+ # f3. f3 is the set of datum-names or locations of 
datum-pointers in the f3-block. Since all datum-pointers 
are located between f3o+ 1 and f3o+ # f3, let f3 be the set 
of integers {1,2 ... ', # f3}. Therefore any integer i such 
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that I~i~ #/3 is the datum-name for the i-th datum­
pointer. The i-th datum-pointer locates a block of 
storage containing a description of the i-th datum and 
all the generator set names (elements of 1]) for which 
the i-th datum name is a constituent. 

Details of 1]-block 

The 1]-block is similar to the /3-block with 1]0 and 
# '1] as the address of the head location and cardinality 
respectively. The contents of the 1]-block are pointers. 
These pointers are of two types and are distinguished by 
an integer '1]* such that 1<1]*~ #1]. For alll~i<1]*, 
i is the name of a generator set, and for all1]*~i~ # 1], 
i is a composite set. A generator set has a set represen­
tation while a composite set does not since it is the un­
iOn of some generator sets. For i~ '1]* the pointer.in '1]o+i 
locates a section of storage containing names of genera­
tor sets. For i < 1]:1< the pointer in 1]o+i locates a section 
of storage containing all composite set names that use 
i, and a pointer to the set representation of i. Since all 
generator sets are mutually disjoint and since only 
generator sets have a storage representation, there is 
no duplication of storage in an STDS. 

Set representation 

In order to insure fast execution times for the set 
operations in S, the sets involved must be isomorphic to 
a unique linear representation of their elements. Unique 
is used here to mean unique relative to some predefined 
well-ordering relation, such that independently of how 
the set is presented to a machine the ordering of its 
elements will always be the same. This well-ordering 
must be preserved under union. Any ordering satisfying 
the above conditions is adequate for the efficient op­
eration of an STDS.! 

Since the set representatives must be isomorphic to 
the sets they represent, every set representation must 
reflect the rank and preserve the order (if any) of the 
sets and their elements. Let A = <a,b,c>, B = {a, 
b,c}, and C = {c,b,a} then Band C must have the same 
set representation while A must have a completely 
different representation. F9r simple sets like these, 
adequate represen~ations ar~ trivial, such is not always 
the case, however. 

Complexes and n-tuples 

If an STDS is to be general then it will have to 
accommodate more imaginative sets than the ones 
above. Let W = {a,b,{{c} },<a,{b,d},c>,< <a,b>, 
c>} and V = {<a,b,c:>,< {<a,b>,<c,d> },<d,a, 
> > ,1 {c} } ,b}. In order for set operations on these sets 
to fall within the allotted time bounds, the storage 
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representations of Wand V must satisfy the well­
ordering condition. Such a representation is not imme­
diatelyobvious. Two problems arise. (I) The first prob­
lem is machine oriented in that an ordered set in set 
theory is defined through nesting and repetition of the 
elements of the set. For example the Kuratowski defi­
nition of ordered pair gives <a,b> = {{a},{a,b}}. 
Since anY machine representation will induce an order 
on the elements of a set by their location in storage, 
this may be utilized instead of relying on r~dundancy 
of storage. This in tUrn may present problems in pre­
serving the isomorphism between sets and their set , . . 
representatIOns, SInce an unordered set must have a 
unique representation and no ordering on its elements. 
(2) The second problem is much allied with the first 
except that it is more biased towards the foundations 
of set theory. There seems to be a general lack of pre­
cision in set theory when ordering beyond a pair is 
involved. No set representation of ordered triples, 
ordered quadruples, quintuples, sextuples, etc., is given 
save for an arbitrary assignment in terms of ordered 
pairs. (This problem is discussed by Skolem3). For 
example <a,b,c,d> has no set equivalent independent 
of ordered pairs, it is given one of the following as its 
canonical fo~: < <a,b>, <c,d> >; <a,<b,<c,d 
»>; <a,«b,c>,d>; «<a,b>,c>,d>;« 
a,<b,c> >,d>; or {<l,a>, <2,b>, <3,c>, <4, 
d> } . Clearly each of these sets has independent stature 
and assigning one as a canonical form of the other 
preclu.des the use of the others. The problem with 
order~d tuples is compounded in that though they are 
defined as sets they are excluded from meaningful set 

( 

operations. The intersection between quadruples < a, 
b,c,d> and <x,b,c,d> is always empty unless a=x, 
and even then it depends on which assignment is used. 
In another paper! the definition of a "complex" is 
presented which preserves the distinction between 
different nestings of ordered pairs, does not require 
order to be defined by repetition, and does not arbitrar- . 
ily exclude certain sets from being operated on by set 
operations. The formal definition of a complex is given 
by the following, where N is the set of natural numbers. 

DEFINITION OFA COMPLEX: Any two sets A 
and B form a complex (A;B) if and only if (~X) 

(~Y)(XE{A,B} )(Y E{A,B} )[(VXE X)(~iEN) 

({ {x},i} EY) & (VYEY) (~j EN) (~xEX) ({ {x},j} = y)] 

This definition is stated in such a way as not to presup­
pose any ordering in (A;B) of A before B, insuring that 
a complex be an unordered coupling of two sets, each 
bearing a mutual dependence on the other. The defi-
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nition states that for every element x of one of the sets, 
X, the other set, Y, contains an element containing a 
natural number and a set whose only element is x; and 
that Y is such that every element of Y contains only a 
natural number and a singleton set containing an ele­
ment of X (either X=A and Y =B, or X=B and 
Y =A, but not both). Let A = {a,b,c}, B = { { {a},l}, 
{{b},3}, {{ c}, 963}, {{ b},6} } and let C = ta,b, { {b},3}, 
{{a},l},{ {d},6}} then (A;B), (B;A) and (An C;Bn C) 
are complexes, while (A;A), (A;C), (A;B n C) and 
(A n C ;B) are not complexes. From the definition it 
shouid be noticed that if (A;B) is a complex then (B;A) 
is the same complex and A~B. Without giving a formal 
definition here let X€iA be understood to mean that x 
is in the i-th position of the complex A, then a notational 
schema for a complex is given by: 

DEFINITION SCHEMA: {xi:'lF(x,i)} =A iff [(Vx) 

(ViEN) (XEiA +-+ 'IF(x,i)) & A is a complex] 

These results allow a set theoretic foundation for the 
following equivalent notations: 

set {a,b,c} {al,bl,cl} 

ordered pair <a,b> {al,b2 } 

ordered triple <a,b,c> {al,b2,c3} 

ordered quad~uple <a,b,c,d> {al b2cS d'} , , , 
ordered pairs of ordered pairs 

< <a,b>,<c,d> > { {aI,b2}1,{cI,d2}2} 

<a,<b,<c,d> > > {aI, {b\ {cI,d2}2}2} 

<a,< <b,c>,d> > {al, { {bI,c2}I,d2}2} 

< < <a,b>,c>,d> { { {al,b2}I,c2}1,d2} 

< <a,<b,c> >,d> { {a\{bI,c2}2}1,d2} 

{<1,a>,<2,b>,<3,c>,<4,d>} = {{P,a2,},{21,b2}, 
{3\c2

} ; {4\d2
} } 

and from the beginning of this section, 

W = {al,bl,{ {Cl} }, {aI, {bl,dl}2,c3}, { {al,b2},cl}} 

V = {{a1,b2,c3},{ {{aI,b2},{cI,d2} },{dl,a2}2},{ {Cl} },bl} 

Since for all a, {al} = {a}, the exponent '1' is optional. 
It should be stressed that the symbol 'Xi' has no mean­
ing apart from being enclosed by set brackets. mean­
{a6,b8 }, then a€oA and bEsA are true, but a6 eA isH A= 
ingless. For examples of set operations bet",een com­
plexes see Figure 2. 

1) <a,b,c>n<x,b,y> = {b 2
} 

3) {a,b,c}n<a,x,y> = <a> = {al} = {a} 

5) <a,b,z>A<a,y,c>~<x,b,c> = <x,y,z> 

6) <a,b,c,d> ~ <X,y,cid> = <a,b> 

FIGURE 2-8et operations between complexes 

Set operation 8Ubrout~ne8 

The viability of an STDS rests not only on the speed 
of the set operations, but also on their scope. Table 1 
presents some available set operations for constructing 
questions in any way compatible within a parent lan­
guage. (For those who are not familiar with the set­
theoretic definitions or are not accustomed to the 
notation preferred in this monograph, the definitions 
are given in Appendix 1.) These subroutines are pre­
sented in a format compatible with FORTRAN, and 
with MAD if periods are added as in the examples to 
follow. The argument represented by C in the sub­
routines can be deleted. This default case assigns a 
temporary storage block whose location is returned in 
D, as if it were a pennanent storage location, i.e., 
D = UN(A,B). Since all subroutines operate on the 
name of a storage block representing a set, then for all 
subroutines that return a name, any degree of nesting of 
these subroutines within subroutines is allowable (see 
examples). Since the only restriction on a set represen­
tation is that it b~ isomorphic to the set and have a 
predefined well-ordering on its elements, there are many 
storage configurations available. MODE allows a 
choice of different storage configurations for non-set­
theoretic needs. Though all the subroutines appear to be 
defined just for sets, they are defined for any complex 
as welL However, to make use of complexes that are not 
sets since they allow the extension of binary relation 
properties (e.g., domain, image, relative product, re­
striction, etc.) to sets of arbitrary length n-tuples, 
further delimiters must be included. For example using 
'Q' and an extra argument the I-th relative produce of 
A with B could be QRP (I, A, B, C), and the I-th do­
main of A could be QDM(I, A, C), and QELM(I, A, B) 
could represent the question "is A an I -th element of 
B?" . 
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Some applications 

This section will be devoted to examples demonstrat­
ing the applicability of set-theoretic questions. For a 
germane reference on computer graphics see Johnson.2 

The first two examples are to give some indication of 
execution times. The two examples were run on an IBM 
7090, the times mayor may not be characteristic of the 
potential speeds in an STDS. With just two examples 
no claims can be made other than that two examples 
were run with the following r~sults : 

EXAMPLE 1: Given a population of 24,000 people 
and a file F containing a ten-tuple for each person 
such that each ten·tuple is of the form <age, sex, 
marital status, race, political affiliation, mother 
tongue, employment status, family size, highest 
school grade completed, type of dwelling>, the 
following four questions were asked: 

a. Find the number of married females: 
Answer: 6,015 Time: 0.50 seconds 

b. Find the number of people of Spanish race 
whose mother tongue is not Spanish. 

Answer: 1,352 Time: 0.48 seconds 
c. Find the number of people aged 93 or 94. 

Answer: 46 Time: 0.73 seconds 
d .. Find the number of males and unmarried 

females. 
Answer: 17,985 Time: 0.55 seconds 

e. Find the number of males between the ages of 
20 and 40. 

Answer: 588 Time: 0.62 seconds. 

EXAMPLE 2: Given a population of 3,000 people 
and given two collections, A and B, of subsets from 
this population such that: A contains 20 sets of 500 
people, and B contains 500 sets of 20 people. Find the 
set of people belonging to some set in A, to all sets in 
A, and to an odd number of sets in A; and similarly 
for·B. 

Results A-Times B-Times 

a. people in some set 0.73 sec 0.76 sec 
b. people in all sets 0.48 sec 0.05 sec 
c. people in odd no. of sets 0.76 sec 0.78 sec 

A point to notice is that where every element has to be 
accessed, as in (a) and (c), the times are dependent on 
the total number of elements included (~(A) = i(B) 
= 10,000) and not the number of sets involved (20 
for A and 500 fDr B). 

Examples three and four are presented with MAD as 
the parent language, therefore all the subroutine names 
must end with a period. 
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EXAMPLE 3: Let six sets A,B,C,D,E, and F be the 
membership lists of six country clubs. For each male 
resident of Ann Arbor, let ther~ be a datum in {3 for a 
data-block containing: person's name, address, phone 
number, credit rating, age, golf handicap, wife's name 
(if any), political affiliation, religious preference, and 
salary. The set 'fJ will contain the names of the sets, 
namely: A(O), B(O), C(O), D(O), E(O), F(O). This along 
with the collection S of set operations allows an­
swering the following questions. 

1) How many members belong to club A or B but 
not C? 

2) Find the phone numbers of members in an odd 
number of clubs. 

3) Get addresses of members belonging to one and 
only one club. 

4) Get addresses and phone numbers of people not 
in any club. 

5) Find members of A that are not also in B but who 
may be in C only if they ar~ not in D, or in E if 
they are not in F. 

6) Get the average credit rating of members belong­
ing to exactly three clubs. 

The possible questions may become ridiculo11s1y in­
volved and may interact with any spontaneously con­
structed sets. For example of the latter, let X be the 
set of Ann Arbor males born in Ann Arbor. 

7) Find the average age of members born in Ann 
Arbor and compare with average age of members 
not born in Ann Arbor. 

The answers to (1) through (7) formula~ed in an STDS 
are expressed below, with Nand M representing real 
numbers, and with BB for (3 and NN for". 

1) N = C. (RL. (UN. (A,B),C)) 
ans: N 

2) ACC. (l,SD. (I,NN),Q) 
ans: Q. Format 1 gives phone numbers (see 

Table 1, #25) 

3) ACC. (2,EX. (l,NN),Q) 
ans: Q Format 2 gives addresses 

4) ACC. (3,RL. (BB,UN.(l,NN»,Q) 
ans: Q Format 3 gives phone numbers and 

addresses 

5) RL. (RL.(A,B) ,UN. (RL. (D ,C) ,RL. (F ,E»),Q) 
ans:Q 

6) ACC.(4,EX.(3,NN),Q) 
N = 0 
THROUGH LOOP, 
FOR I= 1,1,I.G.C.(Q) 
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LOOP N = N + Q(I) 
N = N/C.(Q) 

ans: N Format 4 gives credit rating 

7) N = 0 
M = 0 
ACC.(5,X,T) 
THROUGH LOOPl; 
FOR 1= 1,1,I.G.C.(T) 

LOOPI N = N + T(I) 
ACC. (5,RL.(BB,X),P) 
THROUGH LOOP2, 
FOR 1=1,1,I.G.C.(P) 

LOOP2 M = M + P(I) 
N = N/C.(T) 
M = M/C.(P) 

ans: Nand M are the respective average ages 
Format 5 gives ages 

EXAMPLE 4: Family lineage is easily expressed in 
STDS. With just five initial relations defined over a 
population U, all questions concerning family ties may 
be expressed. 

Let U be a population of people and let 
M = {,<x,y>: y is the mother of x} 
F = «x,y>: y is the father of x} 
S { <x,y> : y is a sister of x} 
B = «x,y>: y is a brother of x} 
H = {<x,y>: y is a husband of x} 
Let X be any subset of the population U, find 

1) the set G of grandfathers of X. 
G = F[(FUM)LX]] 
1M. (F ,1M. (UN. (F ,M) ,X) ,G) 

set notation 
in an STDS 

2) the set GF of grandfathers of X on the father's 
side. 

GF = F[F[X]] 
1M. (F ,1M. (F ,X) ,GF) 

set notation 
STDS 

3) the set GM of grandfathers of X on the mother's 
side 

GM = G",GF 
RL.(G,GF,GM) 

set notation 
STDS 

4). the set GR: the grandfather relation over U. 
G R = (F U M) IF set notations 
RP.(UN.(F,M),F,GR) STDS 

5) the general relation: P = {<x,y>: y is a parent 
of x} 

P=FUM 
UN.(F,M,P) 

6) the general relation: Sibling, L. 
L=SUB 
UN.(S,B,L) 

set notation 
STDS 

set notation 
STDS 

7) the general relation: Children, C. 

C=MUF=P 
CV.(P,C) 

8) the general relation: Aunt, A. 

set notation 
STDS 

A = (PIS) U (p IB/iI) set notation 
UN.(RP.(P,S),RP.(P,RP.(B,CV.(H»),A) 

STDS 

9) the general relation: Wife, W. 
W=H 
CV.(H,W) 

10) the general relation: Cousin, K. 
K = P/L/C 
RP. (P ,RP. (L,C),K) 

set notation 
STDS 

set notation 
STDS 

11) the general relation: Half-sibling, HS. 
HS = PIC", (M/M U F IF) set notation 
RL. (RP. CCV. (C) ,C) ,IN. (RP. (M,CV. (M», 

RP.(F,CV.(F»),HS) STDS 

12) people in X with no brothers or sisters. 
Q = X rv ~(L) set notation 
RL.(X,DM.(L),Q) STDS 

13) find all relations of X to a set Y such that Y is 
equal to the image of X. 

Q = {A: (A E1]) (Y = A[XD} set notation 
DC.(X,NN,T) STDS 
THROUGH LOOP, FOR 1=1,1,I.G.C.(T) 
B = IM.(T(I),X) 

LOOP WHENEVER EQL.(y,B).E.l, 
UN. (Q,S. (T (I» ,Q) 

Many more possibilities are available and might be 
tried by the reader. 

CONCLUSION 

The purpose of an STDS is to provide a storage repre­
sentation for arbitrarily related data allowing quick 
access, minimal storage, generality, and extreme flexi­
bility. With the definition of a complex, a predefined 
well-ordering, and the operations of set theory, such a 
storage representation can be realized. 

Set-theoretic definitions 

Conventions 

The logical connectives 'and,' 'or,' 'exclusive-or' are 
represented by '/\ " 'v;' '~.' 'For all x,' 'for some x,' 
'for exactly n x' will be represented by 'Vx,' 'Ex', 
'E(n) !x.' Parentheses are used for sepa.ration, and as 
usual the concatenation of parentheses will represent 
conjunction. 
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'A' will be a set if and only if (a) it can be represented 
formally by abstraction (i.e., A= {x:O(x)} where O(x) is 
a predicate condition specifying the allowable elements 
'x'); (b) 'A' can be represented by {,} enclosing the 
specific elements of 'A.' 

Definitions 

The symbol' E' means 'is an element of'; XEA reads: 
"x is an element of A." 

1) UNION 
a) binary union of two sets A and B 

A U B = {x:(xeA)v(xeB)} 
b) unary union of a family G of sets 

UG = {X:(~AEG) (xeA)} 
c) indexed union of a set f (A) over the family G 

U AEG f(A) = fx:(~AeG) (xe f(A»}. 

2) INTERSECTION 
a) binary intersection of A and B 

An B = {x:(xeA) (xeB)} 
b) unary intersection of a famiJy G 

n G = {x:(VA'eG) (xeA)} 
c) indexed intersection of f(A) over the 

family G 
n AEGf(A) = {X:(VAEG) (xef(A»}. 

3) SYMMETRIC DIFFERENCE 
a) binary symmetric difference of A and B 

AAB = {x:(xeA)A(xeB)} * 
* even though the symbol 'A' has 

two different meanings, no con­
fusion is likely 

b) unary symmetric difference of G 
AG = {x:(for an odd number of AEG) 

(xEA) } 
c) indexed symmetric difference of f(A) over G 

AAEGf(A) = {x:(for odd no. of AeG) 
(xef(A»} . 

4) RELATIVE COMPLEMENT 
A ~ B = {x:(xeA)(xEEB)}. 

5) EXACTLY N! 
the set of elements common to exactly In' 
elements of a given set G is represented by: 
EnG = {x:(E(n)!AeG)(xeA)}. 

6) DOMAIN of a set A 
~(A) = {x:(JIy)«x,y>eA)}*. 

* < x,y > represents an ordered pair 

7) RANGE of a set A 
(R(A) = {y:(~x)«x,y>eA)}. 

8) IMAGE of B under A 
A[B] = {y:(~xEB)( <x,y> eA)}. 
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9) CONVERSE IMAGE of B under A 
[B]A = {x:(~yeB)«x,y>eA)}. 

10) CONVERSE of A 
A = {<y,x>: <x,y> eA}. 

11) RESTRICTION 
AlB = {<x,y>:( <x,y > eA)(xeB)}. 

12) RELATIVE PRODUCT of A and B 
A/B = {<x,y > :(~z)( <x,z > eA) 

«z,y> eB)}. 

13) CARTESIAN PRODUCT of A and B 
AXB = {<x,y> :(xeA) (yeB) }. 

14) DOMAIN CONCURRENCE of X relative to A 
~(X:A) = {B:(BeA)(Xc ~(B»}. 

15) RANGE CONCURRENCE of X relative to A 
a(X:A) = {B:(BeA)(XC(R(B»}. 

16) SET CONCURRENCE of X relative to A 
g(X:A) = {B:(BeA)(XcB)}. 

17) CARDINALITY of A 
# A = n iff there are exactly n elements 

inA. 

18) A is a SUBSET of B iff every element of A is an 
element of B:CBB~(Vx)(xeA--+xeB). 

19) A is EQUAL to B iff A is a subset of B, and B is a 
subset of A:A=-B~-+(ACB&BCA). 

20) A and B are DISJOINT iff the intersection of A 
and B is empty:A nB = 0. 

21) A is EQUIVALENT to B iff A and B contain the 
same number of elements: # A = # B. 

GLOSSARY OF SYMBOLS 

Symbol 

iff 

--+ 
~ 

Vx 
~x 

E!x 
ex 
(En)!x 
E 

Symbol Definition 

if and only if 
Identity 
Conjunction 
Disjunction 
Exclusive or 
Implication (if ... then) 
Equivalence 
Universal quantifier (for all) 
Existential quantifies (for some) 
Uniqueness quantifier (for exactly one) 
Odd quantifier (for an odd number of) 
Exact number quantifier 
Set membership 
Empty set 
Non-membership 
Set inclusion 
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AnB Intersection AXB Cartesian product 
AUB Union ~(A) Domain of A 
AaB Symmetric difference (R(A) Range of A 
A""B Relative complement A Converse of A 
<x,y> Ordered pair AlB Relative product of A and B 
{x:O(x) } Definition by abstraction A/X A restricted to X 
xAy Ordered pair < x,y > contained in A A [X] Image of X under A 
UG Union or sum of G [X] A Converse-image of X under A 
nG Intersection of G ~(X) Domain-concurrence of X 
aG Symmetric difference of G (R(X) Range-concurrence of X 
E,.G Elements contained in exactly n elements g(X) Set-concurrence of X 

ofG HA) Total cardinality of A 

The last column contains an executable expression of the set-theoretic expression preceding it. D is an indirect 
name for the permanent storage with name C, or for temporary storage if the argument C is deleted, (see text). 

1) UNION 

2) INTERSECTION 

3) SYMMETRIC DIFFERENCE 

4) RELATIVE COMPLEMENT 
5) EXACTLY N ELEMENTS OF A 
6) DOMAIN of A 
7) RANGE of A 
8) IMAGE of B under A 
9) CONVERSE IMAGE under A 

10) CONVERSE of A 
11) RESTRICTION of A to B 
12) RELATIVE PRODUCT of A and B 
13) CARTESIAN PRODUCT of A and B 
14) DOMAIN CONCURRENCE of A to B 
15) RANGE CONCURRENCE of Ato B 
16) SET CONCURRENCE of A to B 
17) CARDINALITY of A N = $ A,(N is an integer) 

C = AUB 
C = UA 
C = AnB 
C = nA 
C = A.:lB 
C =.:lA 
C = A",B 
C = EnA 
C = ~(A) 
C = (R(A) 
C = AlB] 
C = lB]A 
C=A 
C = AlB 
C = AlB 
C = AXB 
C = ~ (A:B) 
C = a (A:B) 
C = ~ (A:B) 

D = UN (A, B, C) 
D = UN (1, A, C) 

D = IN (A, B, C) 
D = IN (1, A, C) 
D = SD (A, B, C) 
D = SD (1, A, C) 
D = RL (A, B, C) 
D = EX (N, A, C) 
D = DM (A, C) 
D = RG (A, C) 
D = 1M (A, B,C) 
D = CM (A, B, C) 
D = CV (A, C) 
D = RS (A, B, C) 
D = RP (A, B, C) 
D = XP (A, B, C) 
D = DC (A, B, C) 
D = RC (A, B, C) 
D = SC (A, B, C) 
N = C (A) 

BOOLEAN OPERATIONS I = 1 if the statement is true: 
I = 0 if the statement is false. 

18) A is a subset of B 
19) A is equal to B 
20) A and B are disjoint 
21) A is equipollent to B 
22) A is an element of B 

SPECIAL CONTROL OPERATIONS 
23) SET CONSTRUCTION 
24) MODE of A (see text) N is an integer 
25) ACCESS DATA in A by format N 

C = {A, B, X, ... } 

I = SBS (A, B) 
I = EQL (A, B) 
I = DSJ (A, B) 
I = EQP (A, B) 
I = ELM (A, B) 

D = S(C, A, B, X, ... ) 
N = M(A) 
D = ACC (N, A, C) 

(each format is written in the parent 
language and given an integer name) 

TABLE I-Some set operations expressed as subroutines 
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