
Description of a set-theoretic data structure

by DAVID L. CHILDS

University oj Michigan
Ann Arbor, Michigan

INTRODUCTION

The overall goal, of which this paper is a part, is the
development of a machine-independent data structure
all~wing rapid processing of data related by arbitrary
~ssignment such as: the contents of a telephone book,
h?rary fi~es, census reports, family lineage, graphic
dIsplays, .Information retrieval systems, networks, etc.
Data whIch are non-intrinsically related have to be
expressed (stored) in such a way as to define the way in
which they are related before any data structure is
applicable. Since any relation can be expressed in set
theo~y as a set of ordered pairs and since set theory
~rovides a wealth of operations for dealing with rela­
~Ions, . a ~et-theoretic data structure appears worth
InvestIgatIOn.

A Set-Th~oretic Data Structure (STDS) is a storage
r~presentatIOn of sets and set operations such that:
gIven any family of sets 1J and any collection S of set
operations an STDS is any storage representation which
is isomorphic to 1J with S. The language used with an
STDS may contain any set-theoretic expression capable
o! construction from 1J and S. Every stored representa­
tIOn of a set must preserve all the properties of that set
and every representation of a particular set must be­
have identically under set operations.

General 8torage repre8entation

An STDS is comprised of five structurally indepen-
dent parts:

1) a collection of set operations S.
2) a set of datum names (3.
3) the data: a collection of datum definitions, one for

each datum name.
4) a collection of set names 1J.

5) a collection of set repre~entations, each with a
name in 1J.

The storage representation is shown schematically in

Figure 1. In order for an STDS to be practical the set
operations must be executed rapidly. If any two sets
can be well ordered (a linear order with a first element)
such that their union preserve~ this well-ordering, then
the subroutines needed for set operations just involve
a form of merge or, at worst, a binary search of just one
of the sets: It was shown in another paper! that any set
defined over {j could be so ordered. Sets are represented
by blocks of contiguous storage locations with 1J con­
taining names of all the sets. The set (3 is the set of all
datum names, and is represented by a contiguous block
of storage locations; the address of a location in the
(3-block is a datum name and an element of (3. The
content of a location in the (3-block is the address of a
stored description of that datum (see Figure 1). The
contents of the (3-block and the 1J-block are the only
pointers needed for the operation of an STDS. The
storage representations of the individual sets do not
contain pointers to other sets, but contain information
about datum names. Since each set representation has
only one pointer associated with it, the set representa­
tion can be moved throughout storage without affect­
ing its contents or the contents of any other set repre­
sentation-only the one pointer in 1J is affected. Up­
dating set representations is virtually trivial. Elements
to be deleted are replaced by the last element in the set.
Elements to be added are added to the end of the set
representation as space allows. When contiguous
locations are no longer available a new set is formed
and the element in 1J that referenced the set before it
was extended now references a location that indicates
that the set is now the union of two set representations.
(In a paging structure such sets could be kept on
the same page.) This demonstrates two different kinds
of sets in 1J: generator sets and composit~ sets. Only the
generator set~ have storage representations, the com­
posite sets are unions of generator sets, and the genera­
tor sets are mutually disjoint. Since no duplication of
storage of sets is necessary and since the set representa-

557

From the collection of the Computer History Museum (www.computerhistory.org)

558 Fall Joint Computer Conference, 1968

tions are kept to a minimum by containing just the
elements of the sets and no pointers, an STnS is in­
trinsically a minlimal Rtorage representation for arbi­
trarily related data.

Operation of an STDS

An STnS relies on set operations to do the work
usually allocated to pointers or hash-coding as in list
structures, ring structures, associative structures, and
relational files. A set operation of S is represented by a
subroutine which accesses sets through pointers in "'.
Again it should be stressed that no pointers exist be­
tween sets, hence the set operations S act as the only
structural ties between sets. Since S will allow any set­
theoretic operation, S will be rich enough that all
information between sets may be expressed by a set­
theoretic expression generated from the operations of
S. Any expression establishes which sets are to be ac­
cessed and which operations are to be performed within
and between these sets; therefore all pages needed for
completion of an expression are known before the
expression is executed. Complementing the set opera­
tion subroutines are some strictly storage manipulation
subroutines. These, however, are not reflected in any

set-theoretic expression. These routines change storage
t.

modes and perform sorts and orderings. A fast sort
routine has been programmed with execution times as a
linear function of the number of words to be sorted.
(On an IBM 7090 this sort ordered 1000 words in 0.35
seconds and 10,000 words in 3.3 seconds. The nature of
this sort is such that on an IBM 360/67 it may sort up
to 60,000 bytes per second. This routine is presently
being programmed.) Another subroutine which is
crucial to the operation of an STnS is the tau-ordering
routine.1 This routine gives a well-ordering which is
preserved under union.

Details of f3-block

The f3-block is a section of contiguous storage loca­
tions with f30 as the address of the head location. The
first location containing a datum-pointer has the ad­
dress f3o+ 1, and the location of the i-th datum-pointer is
f3o+i. Let # f3 represent the total number of datum­
pointers, then the last address of the f3-block would be
f3o+ # f3. f3 is the set of datum-names or locations of
datum-pointers in the f3-block. Since all datum-pointers
are located between f3o+ 1 and f3o+ # f3, let f3 be the set
of integers {1,2 ... ', # f3}. Therefore any integer i such

SET OPERATIONS:S SET NAMES:n SET REPRESENTATIONS DA't'TJM NAMES: 8 DATA STORAGE

/~"\
/
(

S

\

GENERATOR
SETS

COMPOSITE
SETS

8 0
r

n(1)
8

B

Ro+i
n (1) rei)

8 DATUM
DESCRIPTI

8

~o+#8 "- r .

Q(1) through n(n*-1) are sets of pointers to COMPOSITE SETS in n-BLO~K

SH'l",*) through SHin) are sets of pointers to GENERATOR SETS in n-BT ... OCT{

rei) are sets of pointers to GENERATOR SETS inn-BLOCK

FIGURE 1

From the collection of the Computer History Museum (www.computerhistory.org)

that I~i~ #/3 is the datum-name for the i-th datum­
pointer. The i-th datum-pointer locates a block of
storage containing a description of the i-th datum and
all the generator set names (elements of 1]) for which
the i-th datum name is a constituent.

Details of 1]-block

The 1]-block is similar to the /3-block with 1]0 and
'1] as the address of the head location and cardinality
respectively. The contents of the 1]-block are pointers.
These pointers are of two types and are distinguished by
an integer '1]* such that 1<1]*~ #1]. For alll~i<1]*,
i is the name of a generator set, and for all1]*~i~ # 1],
i is a composite set. A generator set has a set represen­
tation while a composite set does not since it is the un­
iOn of some generator sets. For i~ '1]* the pointer.in '1]o+i
locates a section of storage containing names of genera­
tor sets. For i < 1]:1< the pointer in 1]o+i locates a section
of storage containing all composite set names that use
i, and a pointer to the set representation of i. Since all
generator sets are mutually disjoint and since only
generator sets have a storage representation, there is
no duplication of storage in an STDS.

Set representation

In order to insure fast execution times for the set
operations in S, the sets involved must be isomorphic to
a unique linear representation of their elements. Unique
is used here to mean unique relative to some predefined
well-ordering relation, such that independently of how
the set is presented to a machine the ordering of its
elements will always be the same. This well-ordering
must be preserved under union. Any ordering satisfying
the above conditions is adequate for the efficient op­
eration of an STDS.!

Since the set representatives must be isomorphic to
the sets they represent, every set representation must
reflect the rank and preserve the order (if any) of the
sets and their elements. Let A = <a,b,c>, B = {a,
b,c}, and C = {c,b,a} then Band C must have the same
set representation while A must have a completely
different representation. F9r simple sets like these,
adequate represen~ations ar~ trivial, such is not always
the case, however.

Complexes and n-tuples

If an STDS is to be general then it will have to
accommodate more imaginative sets than the ones
above. Let W = {a,b,{{c} },<a,{b,d},c>,< <a,b>,
c>} and V = {<a,b,c:>,< {<a,b>,<c,d> },<d,a,
> > ,1 {c} } ,b}. In order for set operations on these sets
to fall within the allotted time bounds, the storage

Description of Set-Theoretic D'ata Structure 559

representations of Wand V must satisfy the well­
ordering condition. Such a representation is not imme­
diatelyobvious. Two problems arise. (I) The first prob­
lem is machine oriented in that an ordered set in set
theory is defined through nesting and repetition of the
elements of the set. For example the Kuratowski defi­
nition of ordered pair gives <a,b> = {{a},{a,b}}.
Since anY machine representation will induce an order
on the elements of a set by their location in storage,
this may be utilized instead of relying on r~dundancy
of storage. This in tUrn may present problems in pre­
serving the isomorphism between sets and their set , . .
representatIOns, SInce an unordered set must have a
unique representation and no ordering on its elements.
(2) The second problem is much allied with the first
except that it is more biased towards the foundations
of set theory. There seems to be a general lack of pre­
cision in set theory when ordering beyond a pair is
involved. No set representation of ordered triples,
ordered quadruples, quintuples, sextuples, etc., is given
save for an arbitrary assignment in terms of ordered
pairs. (This problem is discussed by Skolem3). For
example <a,b,c,d> has no set equivalent independent
of ordered pairs, it is given one of the following as its
canonical fo~: < <a,b>, <c,d> >; <a,<b,<c,d
»>; <a,«b,c>,d>; «<a,b>,c>,d>;«
a,<b,c> >,d>; or {<l,a>, <2,b>, <3,c>, <4,
d> } . Clearly each of these sets has independent stature
and assigning one as a canonical form of the other
preclu.des the use of the others. The problem with
order~d tuples is compounded in that though they are
defined as sets they are excluded from meaningful set

(

operations. The intersection between quadruples < a,
b,c,d> and <x,b,c,d> is always empty unless a=x,
and even then it depends on which assignment is used.
In another paper! the definition of a "complex" is
presented which preserves the distinction between
different nestings of ordered pairs, does not require
order to be defined by repetition, and does not arbitrar- .
ily exclude certain sets from being operated on by set
operations. The formal definition of a complex is given
by the following, where N is the set of natural numbers.

DEFINITION OFA COMPLEX: Any two sets A
and B form a complex (A;B) if and only if (~X)

(~Y)(XE{A,B})(Y E{A,B})[(VXE X)(~iEN)

({ {x},i} EY) & (VYEY) (~j EN) (~xEX) ({ {x},j} = y)]

This definition is stated in such a way as not to presup­
pose any ordering in (A;B) of A before B, insuring that
a complex be an unordered coupling of two sets, each
bearing a mutual dependence on the other. The defi-

From the collection of the Computer History Museum (www.computerhistory.org)

560 Fall Joint Computer Conference, 1968

nition states that for every element x of one of the sets,
X, the other set, Y, contains an element containing a
natural number and a set whose only element is x; and
that Y is such that every element of Y contains only a
natural number and a singleton set containing an ele­
ment of X (either X=A and Y =B, or X=B and
Y =A, but not both). Let A = {a,b,c}, B = { { {a},l},
{{b},3}, {{ c}, 963}, {{ b},6} } and let C = ta,b, { {b},3},
{{a},l},{ {d},6}} then (A;B), (B;A) and (An C;Bn C)
are complexes, while (A;A), (A;C), (A;B n C) and
(A n C ;B) are not complexes. From the definition it
shouid be noticed that if (A;B) is a complex then (B;A)
is the same complex and A~B. Without giving a formal
definition here let X€iA be understood to mean that x
is in the i-th position of the complex A, then a notational
schema for a complex is given by:

DEFINITION SCHEMA: {xi:'lF(x,i)} =A iff [(Vx)

(ViEN) (XEiA +-+ 'IF(x,i)) & A is a complex]

These results allow a set theoretic foundation for the
following equivalent notations:

set {a,b,c} {al,bl,cl}

ordered pair <a,b> {al,b2 }

ordered triple <a,b,c> {al,b2,c3}

ordered quad~uple <a,b,c,d> {al b2cS d'} , , ,
ordered pairs of ordered pairs

< <a,b>,<c,d> > { {aI,b2}1,{cI,d2}2}

<a,<b,<c,d> > > {aI, {b\ {cI,d2}2}2}

<a,< <b,c>,d> > {al, { {bI,c2}I,d2}2}

< < <a,b>,c>,d> { { {al,b2}I,c2}1,d2}

< <a,<b,c> >,d> { {a\{bI,c2}2}1,d2}

{<1,a>,<2,b>,<3,c>,<4,d>} = {{P,a2,},{21,b2},
{3\c2

} ; {4\d2
} }

and from the beginning of this section,

W = {al,bl,{ {Cl} }, {aI, {bl,dl}2,c3}, { {al,b2},cl}}

V = {{a1,b2,c3},{ {{aI,b2},{cI,d2} },{dl,a2}2},{ {Cl} },bl}

Since for all a, {al} = {a}, the exponent '1' is optional.
It should be stressed that the symbol 'Xi' has no mean­
ing apart from being enclosed by set brackets. mean­
{a6,b8 }, then a€oA and bEsA are true, but a6 eA isH A=
ingless. For examples of set operations bet",een com­
plexes see Figure 2.

1) <a,b,c>n<x,b,y> = {b 2
}

3) {a,b,c}n<a,x,y> = <a> = {al} = {a}

5) <a,b,z>A<a,y,c>~<x,b,c> = <x,y,z>

6) <a,b,c,d> ~ <X,y,cid> = <a,b>

FIGURE 2-8et operations between complexes

Set operation 8Ubrout~ne8

The viability of an STDS rests not only on the speed
of the set operations, but also on their scope. Table 1
presents some available set operations for constructing
questions in any way compatible within a parent lan­
guage. (For those who are not familiar with the set­
theoretic definitions or are not accustomed to the
notation preferred in this monograph, the definitions
are given in Appendix 1.) These subroutines are pre­
sented in a format compatible with FORTRAN, and
with MAD if periods are added as in the examples to
follow. The argument represented by C in the sub­
routines can be deleted. This default case assigns a
temporary storage block whose location is returned in
D, as if it were a pennanent storage location, i.e.,
D = UN(A,B). Since all subroutines operate on the
name of a storage block representing a set, then for all
subroutines that return a name, any degree of nesting of
these subroutines within subroutines is allowable (see
examples). Since the only restriction on a set represen­
tation is that it b~ isomorphic to the set and have a
predefined well-ordering on its elements, there are many
storage configurations available. MODE allows a
choice of different storage configurations for non-set­
theoretic needs. Though all the subroutines appear to be
defined just for sets, they are defined for any complex
as welL However, to make use of complexes that are not
sets since they allow the extension of binary relation
properties (e.g., domain, image, relative product, re­
striction, etc.) to sets of arbitrary length n-tuples,
further delimiters must be included. For example using
'Q' and an extra argument the I-th relative produce of
A with B could be QRP (I, A, B, C), and the I-th do­
main of A could be QDM(I, A, C), and QELM(I, A, B)
could represent the question "is A an I -th element of
B?" .

From the collection of the Computer History Museum (www.computerhistory.org)

Some applications

This section will be devoted to examples demonstrat­
ing the applicability of set-theoretic questions. For a
germane reference on computer graphics see Johnson.2

The first two examples are to give some indication of
execution times. The two examples were run on an IBM
7090, the times mayor may not be characteristic of the
potential speeds in an STDS. With just two examples
no claims can be made other than that two examples
were run with the following r~sults :

EXAMPLE 1: Given a population of 24,000 people
and a file F containing a ten-tuple for each person
such that each ten·tuple is of the form <age, sex,
marital status, race, political affiliation, mother
tongue, employment status, family size, highest
school grade completed, type of dwelling>, the
following four questions were asked:

a. Find the number of married females:
Answer: 6,015 Time: 0.50 seconds

b. Find the number of people of Spanish race
whose mother tongue is not Spanish.

Answer: 1,352 Time: 0.48 seconds
c. Find the number of people aged 93 or 94.

Answer: 46 Time: 0.73 seconds
d .. Find the number of males and unmarried

females.
Answer: 17,985 Time: 0.55 seconds

e. Find the number of males between the ages of
20 and 40.

Answer: 588 Time: 0.62 seconds.

EXAMPLE 2: Given a population of 3,000 people
and given two collections, A and B, of subsets from
this population such that: A contains 20 sets of 500
people, and B contains 500 sets of 20 people. Find the
set of people belonging to some set in A, to all sets in
A, and to an odd number of sets in A; and similarly
for·B.

Results A-Times B-Times

a. people in some set 0.73 sec 0.76 sec
b. people in all sets 0.48 sec 0.05 sec
c. people in odd no. of sets 0.76 sec 0.78 sec

A point to notice is that where every element has to be
accessed, as in (a) and (c), the times are dependent on
the total number of elements included (~(A) = i(B)
= 10,000) and not the number of sets involved (20
for A and 500 fDr B).

Examples three and four are presented with MAD as
the parent language, therefore all the subroutine names
must end with a period.

Description of Set-Theoretic D'ata structure 561

EXAMPLE 3: Let six sets A,B,C,D,E, and F be the
membership lists of six country clubs. For each male
resident of Ann Arbor, let ther~ be a datum in {3 for a
data-block containing: person's name, address, phone
number, credit rating, age, golf handicap, wife's name
(if any), political affiliation, religious preference, and
salary. The set 'fJ will contain the names of the sets,
namely: A(O), B(O), C(O), D(O), E(O), F(O). This along
with the collection S of set operations allows an­
swering the following questions.

1) How many members belong to club A or B but
not C?

2) Find the phone numbers of members in an odd
number of clubs.

3) Get addresses of members belonging to one and
only one club.

4) Get addresses and phone numbers of people not
in any club.

5) Find members of A that are not also in B but who
may be in C only if they ar~ not in D, or in E if
they are not in F.

6) Get the average credit rating of members belong­
ing to exactly three clubs.

The possible questions may become ridiculo11s1y in­
volved and may interact with any spontaneously con­
structed sets. For example of the latter, let X be the
set of Ann Arbor males born in Ann Arbor.

7) Find the average age of members born in Ann
Arbor and compare with average age of members
not born in Ann Arbor.

The answers to (1) through (7) formula~ed in an STDS
are expressed below, with Nand M representing real
numbers, and with BB for (3 and NN for".

1) N = C. (RL. (UN. (A,B),C))
ans: N

2) ACC. (l,SD. (I,NN),Q)
ans: Q. Format 1 gives phone numbers (see

Table 1, #25)

3) ACC. (2,EX. (l,NN),Q)
ans: Q Format 2 gives addresses

4) ACC. (3,RL. (BB,UN.(l,NN»,Q)
ans: Q Format 3 gives phone numbers and

addresses

5) RL. (RL.(A,B) ,UN. (RL. (D ,C) ,RL. (F ,E»),Q)
ans:Q

6) ACC.(4,EX.(3,NN),Q)
N = 0
THROUGH LOOP,
FOR I= 1,1,I.G.C.(Q)

From the collection of the Computer History Museum (www.computerhistory.org)

562 Fall Joint Computer Conference, 1968

LOOP N = N + Q(I)
N = N/C.(Q)

ans: N Format 4 gives credit rating

7) N = 0
M = 0
ACC.(5,X,T)
THROUGH LOOPl;
FOR 1= 1,1,I.G.C.(T)

LOOPI N = N + T(I)
ACC. (5,RL.(BB,X),P)
THROUGH LOOP2,
FOR 1=1,1,I.G.C.(P)

LOOP2 M = M + P(I)
N = N/C.(T)
M = M/C.(P)

ans: Nand M are the respective average ages
Format 5 gives ages

EXAMPLE 4: Family lineage is easily expressed in
STDS. With just five initial relations defined over a
population U, all questions concerning family ties may
be expressed.

Let U be a population of people and let
M = {,<x,y>: y is the mother of x}
F = «x,y>: y is the father of x}
S { <x,y> : y is a sister of x}
B = «x,y>: y is a brother of x}
H = {<x,y>: y is a husband of x}
Let X be any subset of the population U, find

1) the set G of grandfathers of X.
G = F[(FUM)LX]]
1M. (F ,1M. (UN. (F ,M) ,X) ,G)

set notation
in an STDS

2) the set GF of grandfathers of X on the father's
side.

GF = F[F[X]]
1M. (F ,1M. (F ,X) ,GF)

set notation
STDS

3) the set GM of grandfathers of X on the mother's
side

GM = G",GF
RL.(G,GF,GM)

set notation
STDS

4). the set GR: the grandfather relation over U.
G R = (F U M) IF set notations
RP.(UN.(F,M),F,GR) STDS

5) the general relation: P = {<x,y>: y is a parent
of x}

P=FUM
UN.(F,M,P)

6) the general relation: Sibling, L.
L=SUB
UN.(S,B,L)

set notation
STDS

set notation
STDS

7) the general relation: Children, C.

C=MUF=P
CV.(P,C)

8) the general relation: Aunt, A.

set notation
STDS

A = (PIS) U (p IB/iI) set notation
UN.(RP.(P,S),RP.(P,RP.(B,CV.(H»),A)

STDS

9) the general relation: Wife, W.
W=H
CV.(H,W)

10) the general relation: Cousin, K.
K = P/L/C
RP. (P ,RP. (L,C),K)

set notation
STDS

set notation
STDS

11) the general relation: Half-sibling, HS.
HS = PIC", (M/M U F IF) set notation
RL. (RP. CCV. (C) ,C) ,IN. (RP. (M,CV. (M»,

RP.(F,CV.(F»),HS) STDS

12) people in X with no brothers or sisters.
Q = X rv ~(L) set notation
RL.(X,DM.(L),Q) STDS

13) find all relations of X to a set Y such that Y is
equal to the image of X.

Q = {A: (A E1]) (Y = A[XD} set notation
DC.(X,NN,T) STDS
THROUGH LOOP, FOR 1=1,1,I.G.C.(T)
B = IM.(T(I),X)

LOOP WHENEVER EQL.(y,B).E.l,
UN. (Q,S. (T (I» ,Q)

Many more possibilities are available and might be
tried by the reader.

CONCLUSION

The purpose of an STDS is to provide a storage repre­
sentation for arbitrarily related data allowing quick
access, minimal storage, generality, and extreme flexi­
bility. With the definition of a complex, a predefined
well-ordering, and the operations of set theory, such a
storage representation can be realized.

Set-theoretic definitions

Conventions

The logical connectives 'and,' 'or,' 'exclusive-or' are
represented by '/\ " 'v;' '~.' 'For all x,' 'for some x,'
'for exactly n x' will be represented by 'Vx,' 'Ex',
'E(n) !x.' Parentheses are used for sepa.ration, and as
usual the concatenation of parentheses will represent
conjunction.

From the collection of the Computer History Museum (www.computerhistory.org)

'A' will be a set if and only if (a) it can be represented
formally by abstraction (i.e., A= {x:O(x)} where O(x) is
a predicate condition specifying the allowable elements
'x'); (b) 'A' can be represented by {,} enclosing the
specific elements of 'A.'

Definitions

The symbol' E' means 'is an element of'; XEA reads:
"x is an element of A."

1) UNION
a) binary union of two sets A and B

A U B = {x:(xeA)v(xeB)}
b) unary union of a family G of sets

UG = {X:(~AEG) (xeA)}
c) indexed union of a set f (A) over the family G

U AEG f(A) = fx:(~AeG) (xe f(A»}.

2) INTERSECTION
a) binary intersection of A and B

An B = {x:(xeA) (xeB)}
b) unary intersection of a famiJy G

n G = {x:(VA'eG) (xeA)}
c) indexed intersection of f(A) over the

family G
n AEGf(A) = {X:(VAEG) (xef(A»}.

3) SYMMETRIC DIFFERENCE
a) binary symmetric difference of A and B

AAB = {x:(xeA)A(xeB)} *
* even though the symbol 'A' has

two different meanings, no con­
fusion is likely

b) unary symmetric difference of G
AG = {x:(for an odd number of AEG)

(xEA) }
c) indexed symmetric difference of f(A) over G

AAEGf(A) = {x:(for odd no. of AeG)
(xef(A»} .

4) RELATIVE COMPLEMENT
A ~ B = {x:(xeA)(xEEB)}.

5) EXACTLY N!
the set of elements common to exactly In'
elements of a given set G is represented by:
EnG = {x:(E(n)!AeG)(xeA)}.

6) DOMAIN of a set A
~(A) = {x:(JIy)«x,y>eA)}*.

* < x,y > represents an ordered pair

7) RANGE of a set A
(R(A) = {y:(~x)«x,y>eA)}.

8) IMAGE of B under A
A[B] = {y:(~xEB)(<x,y> eA)}.

Description of Set-Theoretic Data St"ructure 563

9) CONVERSE IMAGE of B under A
[B]A = {x:(~yeB)«x,y>eA)}.

10) CONVERSE of A
A = {<y,x>: <x,y> eA}.

11) RESTRICTION
AlB = {<x,y>:(<x,y > eA)(xeB)}.

12) RELATIVE PRODUCT of A and B
A/B = {<x,y > :(~z)(<x,z > eA)

«z,y> eB)}.

13) CARTESIAN PRODUCT of A and B
AXB = {<x,y> :(xeA) (yeB) }.

14) DOMAIN CONCURRENCE of X relative to A
~(X:A) = {B:(BeA)(Xc ~(B»}.

15) RANGE CONCURRENCE of X relative to A
a(X:A) = {B:(BeA)(XC(R(B»}.

16) SET CONCURRENCE of X relative to A
g(X:A) = {B:(BeA)(XcB)}.

17) CARDINALITY of A
A = n iff there are exactly n elements

inA.

18) A is a SUBSET of B iff every element of A is an
element of B:CBB~(Vx)(xeA--+xeB).

19) A is EQUAL to B iff A is a subset of B, and B is a
subset of A:A=-B~-+(ACB&BCA).

20) A and B are DISJOINT iff the intersection of A
and B is empty:A nB = 0.

21) A is EQUIVALENT to B iff A and B contain the
same number of elements: # A = # B.

GLOSSARY OF SYMBOLS

Symbol

iff

--+
~

Vx
~x

E!x
ex
(En)!x
E

Symbol Definition

if and only if
Identity
Conjunction
Disjunction
Exclusive or
Implication (if ... then)
Equivalence
Universal quantifier (for all)
Existential quantifies (for some)
Uniqueness quantifier (for exactly one)
Odd quantifier (for an odd number of)
Exact number quantifier
Set membership
Empty set
Non-membership
Set inclusion

From the collection of the Computer History Museum (www.computerhistory.org)

564 Fall Joint Computer Conference, 1968

AnB Intersection AXB Cartesian product
AUB Union ~(A) Domain of A
AaB Symmetric difference (R(A) Range of A
A""B Relative complement A Converse of A
<x,y> Ordered pair AlB Relative product of A and B
{x:O(x) } Definition by abstraction A/X A restricted to X
xAy Ordered pair < x,y > contained in A A [X] Image of X under A
UG Union or sum of G [X] A Converse-image of X under A
nG Intersection of G ~(X) Domain-concurrence of X
aG Symmetric difference of G (R(X) Range-concurrence of X
E,.G Elements contained in exactly n elements g(X) Set-concurrence of X

ofG HA) Total cardinality of A

The last column contains an executable expression of the set-theoretic expression preceding it. D is an indirect
name for the permanent storage with name C, or for temporary storage if the argument C is deleted, (see text).

1) UNION

2) INTERSECTION

3) SYMMETRIC DIFFERENCE

4) RELATIVE COMPLEMENT
5) EXACTLY N ELEMENTS OF A
6) DOMAIN of A
7) RANGE of A
8) IMAGE of B under A
9) CONVERSE IMAGE under A

10) CONVERSE of A
11) RESTRICTION of A to B
12) RELATIVE PRODUCT of A and B
13) CARTESIAN PRODUCT of A and B
14) DOMAIN CONCURRENCE of A to B
15) RANGE CONCURRENCE of Ato B
16) SET CONCURRENCE of A to B
17) CARDINALITY of A N = $ A,(N is an integer)

C = AUB
C = UA
C = AnB
C = nA
C = A.:lB
C =.:lA
C = A",B
C = EnA
C = ~(A)
C = (R(A)
C = AlB]
C = lB]A
C=A
C = AlB
C = AlB
C = AXB
C = ~ (A:B)
C = a (A:B)
C = ~ (A:B)

D = UN (A, B, C)
D = UN (1, A, C)

D = IN (A, B, C)
D = IN (1, A, C)
D = SD (A, B, C)
D = SD (1, A, C)
D = RL (A, B, C)
D = EX (N, A, C)
D = DM (A, C)
D = RG (A, C)
D = 1M (A, B,C)
D = CM (A, B, C)
D = CV (A, C)
D = RS (A, B, C)
D = RP (A, B, C)
D = XP (A, B, C)
D = DC (A, B, C)
D = RC (A, B, C)
D = SC (A, B, C)
N = C (A)

BOOLEAN OPERATIONS I = 1 if the statement is true:
I = 0 if the statement is false.

18) A is a subset of B
19) A is equal to B
20) A and B are disjoint
21) A is equipollent to B
22) A is an element of B

SPECIAL CONTROL OPERATIONS
23) SET CONSTRUCTION
24) MODE of A (see text) N is an integer
25) ACCESS DATA in A by format N

C = {A, B, X, ... }

I = SBS (A, B)
I = EQL (A, B)
I = DSJ (A, B)
I = EQP (A, B)
I = ELM (A, B)

D = S(C, A, B, X, ...)
N = M(A)
D = ACC (N, A, C)

(each format is written in the parent
language and given an integer name)

TABLE I-Some set operations expressed as subroutines

REFERENCES

1 DLCHILDS
Feasibility of a set-theoretic data sttucture-a general structure
based on a reconstituted definition of relation
IFIP Congress 68

2 TEJOHNSON
A mass storage relational data structure for computer graphics and

other arbitrary data stores
MIT Department of Architecture Report October 1967

3 TSKOLEM
Two remarks on set theory
MATH SCAND 5 43-46 1957

4 PSUPPES
Axiomatic set theory
Van Nostrand Princeton 1960

From the collection of the Computer History Museum (www.computerhistory.org)

