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1. Introduction

Though the definition of function under classical set theory, CST, adequately services most
mathematical pursuits, it is not suitable for formally modeling general systems behavior. However,
using the modeling extensions provided by extended set theory[1], XST, it is a rather easy
exercise to redefine functions, while preserving CST dependent definitions, that provide the formal
muscle required to model general systems behavior[2]. This paper is for those that like exercise.

The basic notion of the term function suggests a process that accepts an input and produces
an output. This notion can be refined by stipulating a domain of acceptable inputs coupled with
a codomain of acceptable outputs. The notion can be further refined to accommodate properties
like: on, onto, one-to-one, many-to-one, and one-to-many. The exclusion of the last property
qualifies a process to be a function.

A practical consequence of defining processes in terms of extended set processing[3] allows
building intrinsically reliable systems that can dynamically manage data access performance.

2. Processes

As in CST where functions are a restricted relation as defined by the CST image operation, the
XST definition of function will be a restricted process as defined by the XST image operation.

For both conceptual convenience and mathematical compatibility, the term process will be
defined as an abstract modeling symbol that can be algebraically manipulated and combined
with other like symbols to reflect the behavior of one set as influenced by another. Not having
any mathematical substance, processes do not exist in any formal set theory and thus can not be
contained in sets. However, since the notation for a process will be defined in terms of legitimate
sets, these sets can be represented in such a way as to denote the proper process.

Definition 2.1. Process: Two sets f and σ define a process f(σ) iff

(∃x)
(

f(σ)(x) 6= ∅
)

& (∀g)(g ⊆· f )(∃y)
(

g(σ)(y) 6= ∅
)

.

[Where ‘⊆· ’ means non-empty subset.]

Definition 2.2. Process Equality:

f(σ) = g(ω) ⇐⇒ (∀x)( f(σ)(x) = g(ω)(x) ).

Since all uses of process are only a prediction, the actual set behavior can not be realized
until a process is given a set-theoretic interpretation. This can be achieved with a definition of
Application that equates the process f(σ) with an extended definition of Image. Similarly as to
how CST functions are defined by the Image operation.

3. Application

The familiar notation for a function, f(a) = b, actually has a set-theoretic definition in terms
of Image. Image is defined in terms of a set of ordered pairs, R, and a set A containing ‘first
elements’ from ordered pairs in R.

Definition 3.1. CST Image: R
[

A
]

= {y : (∃x)(x ∈ A & 〈x, y〉 ∈ R }.
Given a set of ordered pairs, f , such that no ‘second element’ of an ordered pair in f shares the

same ‘first element’, then a CST function can be defined as follows.
1
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Definition 3.2. CST Function: f(a) = b ⇐⇒ f
[

{a}
]

= {b}.
Though this equivalence may be interesting, it may not appear particularly useful. However,

the definition of Image is actually equivalent to the set constructed by two more primitive set
operations: the Restriction operation followed by the 2-Domain operation.

Definition 3.3. CST Restriction: R | A =
{

〈x, y〉:
(

〈x, y〉 ∈R
)

& (x ∈ A)
}

.

Definition 3.4. CST 1-Domain: D� 1(R) =
{

x : (∃y)
(

〈x, y〉 ∈ R
}

.

Definition 3.5. CST 2-Domain: D� 2(R) =
{

y : (∃x)
(

〈x, y〉 ∈ R
}

.

In the above definitions R is a relation, a set of ordered pairs. The restriction operation
produces a subset of R dictated by the elements available in A. The 1-Domain operation produces
a collection of all ‘first elements’ from ordered pairs in R. The 2-Domain operation produces a
collection of all ‘second elements’ from ordered pairs in R.

A more constructive definition of CST Image can now be defined in terms of Restriction and
Domain operations.

Definition 3.6. CST Image: R
[

A
]

= D� 2

(

R |A
)

.

The CST function can now be defined to include a constructive definition of Image.

Definition 3.7. CST Function: f(a) = b ⇐⇒ f
[

{a}
]

= D� 2

(

f | {a}
)

= {b}.

The CST model for defining CST functions, using Relations, Image, Restriction, and Domain,
works just as well for defining XST functions.

The big difference is that CST functions are sets, while XST functions are behaviors. A recon-
ciliation of theses differences has to be formally defined. The definition of Application is the XST
answer to the role of Image in CST.

Definition 3.8. Application: f(σ)(x) = f
[

x
]

σ
.

Application dictates a set behavior that produces a result set, when the behavior is applied
to a set. It is important to recognize that the application of a process produces a set while the
process itself defines a behavior of a set, and does not define a specific set.

Note: For a set Q, ‘f(σ)(x) ∈ Q’ may be true, while ‘f(σ) ∈ Q’ can not be. The expression
‘f(σ)(x)’ defines a set-membership condition, while the expression ‘f(σ)’ defines a set-behavior.

Though the definition of Application is deceptively similar to the CST definition of function,
the difference is significant.

Definition 3.9. CST Function: f(a) ∈ f
[

{a}
]

.

In both cases f may be the same set of ordered pairs. However f(σ) is a behavior, not a set.

While f(σ)(x) is a set as defined by f
[

x
]

σ
. Possibly the most notable difference between the CST

definition of function and the XST definition of function is that CST functions take elements-

to-elements while XST functions take sets-to-sets. However it will be shown that with sufficient
manipulation all four of the following can be supported: elements-to-elements, elements-to-sets,
sets-to-elements, and sets-to-sets

Similar to the constructive definition of CST Image, the XST Image to support the Application
operation will be defined in terms of an XST version of Domain and an XST version of Restriction.

Definition 3.10. XST Image: R
[

A
]

〈σ1,σ2〉
= D� σ2

(R |
σ1

A).

This is read as the σ2-Domain of the σ1-Restriction. Both of which need to be defined, along
with supporting definitions.
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4. Nested Applications

Application dictates a set behavior that produces a result set, when the behavior is applied to
a set. What happens when a behavior is applied to a behavior, possible even itself?

Definition 4.1. Nested Application: f(σ)(g(ω)) =
(

f(σ)(g)
)

(ω)
=

(

f
[

g
]

σ

)

(ω)
.

Notice that g(ω) may or may not make mathematical sense, but whether or not it does is not
relevant to the definition. Note also, an application applied to a process produces another process,
not a result set!

Though application is well defined, sequences of applications are not. Consider the simple
expression f(σ)g(ω)(x). Without proper bracketing or an explicitly defined bracketing conven-

tion, its meaning is ambiguous. There are two legitimate interpretations: f(σ)

(

g(ω)(x)
)

and
(

f(σ)(g(ω))
)

(x). The differences are explicit in the following examples.

Example 4.1. Interpretations of f(σ)g(ω)(x).

(a) f(σ)

(

g(ω)(x)
)

= f
[

g
[

x
]

ω

]

σ
,

(b)
(

f(σ)(g(ω))
)

(x) =
(

f(σ)(g)
)

(ω)
(x) =

(

f
[

g
]

σ

)

[

x
]

ω
.

Example 4.2. Interpretations of f(σ)g(ω)h(τ )(x).

(a) f(σ)

(

g(ω)

(

h(τ)(x)
))

= f
[

g
[

h
[

x
]

τ

]

ω

]

σ
,

(b) f(σ)

(

(

g(ω)(h(τ))
)

(x)
)

= f(σ)

(

(

g(ω)(h)
)

(τ)
(x)

)

= f
[(

g
[

h
]

ω

)

[

x
]

τ

]

σ
,

(c) f(σ)

(

g(ω)(h(τ))
)

(x) = f(σ)

(

(

g(ω)(h)
)

(τ)

)

(x) = f
[

g
[

h
]

ω

]

σ

[

x
]

τ
,

(d)
(

f(σ)

(

g(ω)

)(

h(τ)

)

)

(x) =
(

(

f(σ)(g)
)

(ω)
(h)

)

(τ)
(x) =

(

f
[

g
]

σ

[

h
]

ω

)

[

x
]

τ
,

(e)
(

f(σ)(g(ω))
)(

h(τ)(x)
)

=
(

f(σ)(g)
)

(ω)

(

h(τ)(x)
)

= f
[

g
]

σ

[

h
[

x
]

τ

]

ω
.

Note: Interpretations for a sequences greater than three gets large rather quickly with 14 for

four and 42 for five.

It may not be immediately apparent that even the simplest nested case has more that one valid
interpretation. Therefore it must be shown that there is a case where both interpretations are
non-empty and not equal to each other, (see appendix A).

5. Spaces

For the notion of a process to be useful requires some association between the expression for the
application of a process to the accepted values for input and output, or more precisely from the
domain of accepted values to the codomain of accepted values. This can be achieved by specifying
the collection, or space, of all allowable processes from some domain A to some codomain B.

A P-Space, process space, is the collection of all processes from one given set, A, the domain

to another set, B, the codomain.
Since every process f(σ) is associated with a specific domain A and a specific codomain B, the

respective domain and codomain of f(σ) can be expressed in terms f and σ. Conversely, for any
given domain A and codomain B, a process space, P(A, B), defines the collection of all processes
having A as its domain and B as its codomain. (Sing(A) means that A is a singleton set and
‘⊆· ’ means non-empty subset.)

Definition 5.1. Process Space, P-Space: (where σ = 〈σ1, σ2〉)
P(A, B) =

{

fσ: D� σ1
(f) ⊆· A & D� σ2

(f) ⊆· B
)

& (∀x)
(

f(σ)(x) ⊆ B
)

}

.
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Since the collection of all functions from A to B is a sub-collection of all processes from A to
B, a function space, F (A, B), from A to B can be define in terms of a process space P(A, B).

Definition 5.2. Function Space, F -Space:

F (A, B) =
{

fσ: f ∈σ P(A, B) & (∀y)
(

Sing(y) & f(σ)(y) 6= ∅ → Sing
(

f(σ)(y)
)

)}

.

The following are equivalent.

A B⇐⇒f ∈σ F (A, B) ⇐⇒ f(σ): A → B
f(σ)

6. Sub-Spaces

Sub-spaces can be derived by placing restrictions on the most general form of a process space.
There are domain restrictions: on and onto, and also domain associations: many-to-one, one-to-

one. and one-to-many. Legitimate combinations of these restrictions generate 16 basic process
spaces, 8 of these quality as non-empty function spaces. (see Appendix D)

1-1 ONTO ON

1-1 ONTO 1-1 ON ON ONTO

1-1 ON ONTO

SURJECTIVE

INJECTIVE

BIJECTIVE

Legend

P : ∃(1 − n)

F : @(1 − n)
∗ : @(n− 1)

[ : on

] : onto

F(A,B)

F∗(A,B) F(A,B] F [A,B)

F∗(A,B] F∗[A,B) F [A,B]

F∗[A,B]

The above lattice represents the the 8 non-empty process spaces that qualify as function spaces
by not allowing one-to-many input/output associations.

Definition 6.1. F -Space ON A from A to B:
F [A, B) =

{

fσ: f ∈σ F (A, B) & D� σ1
(f) = A

}

.

Definition 6.2. F -Space ONTO B from A to B:
F (A, B] =

{

fσ: f ∈σ F (A, B) & D� σ2
(f) = B

}

.

Definition 6.3. F -Space 1-1 from A to B:
F ∗(A, B) =

{

fσ: f ∈σ F (A, B) & (∀x, y)
(

f(σ)(x) = f(σ)(y) 6= ∅ → x = y
) }

.
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Consequence 6.1. F -Space Properties:

(a) F [A, B) ⊆ F (A, B),

(b) F (A, B] ⊆ F (A, B),

(c) F [A, B] ⊆ F (A, B],

(d) F [A, B] ⊆ F [A, B).

Though all 8 basic function spaces have CST equivalences, three are of traditional interest.

Definition 6.4. Injective F -Space: F ∗[A, B).

Definition 6.5. Surjective F -Space: F [A, B].

Definition 6.6. Bijective F -Space: F ∗[A, B].

With a notational refinement all 29 can be uniquely identified under five specific conditions:
on “[”, onto “]”, many-to-one “>”, one-to-one “−”, and one-to-many “<”, (see appendix E).

A more familiar notation for expressing a process (usually a function), A to B is an arrow,

such as f(σ): A → B or A −→
f(σ)

B .

Definition 6.7. f(σ) : A −→ B ⇐⇒ f ∈σ P(A, B).

Definition 6.8. f(σ) : A −→• B ⇐⇒ f ∈σ F
−
[A, B].

7. Set Theoretic Support

The definition of process is independent of any specific choice of supporting set theory, but one
has to be chosen for any set behavior to be realized. The choice of set theory chosen for the rest
of this paper follows the axioms of an extended set theory[1].

Though Image can be defined directly, its behavior is more intuitive if recognized as a two step
process.

Definition 7.1. Image: R
[

A
]

〈σ1,σ2〉
= D� σ2

(R |
σ1

A).

This is read as the σ2-Domain of the σ1-Restriction. Both of which need to be formally defined,
along with supporting definitions.

Definition 7.2. Ordered Pair: 〈x, y〉 = { x1, y2 }.
Definition 7.3. Re-Scope by Scope: A/σ/ =

{

xw (∃s)
(

x ∈s A & s ∈w σ )
}

.

For example: {ax, by, cz}/{x1,y2,z3}/ = {a1, b2, c3},
Definition 7.4. σ-Domain:

D� σ(R) =
{

xs : (∃z, w)
(

z ∈w R & x = z/σ/ 6= ∅ & s = w/σ/
)

}

.

For example:
D� {A1,C2}

`˘

{aA, bB , cC}
¯´

=
˘

{a1, c2}
¯

,

D� 〈3,1〉

`˘

{a1, b2, c3}{A1,B2 ,C3}
¯´

=
˘

〈c, a〉〈C,A〉
¯

,

D� {31,12 ,y9,v5,v7,RA}

`˘

{a1, b2, c3}{xy,wv ,zR}
¯´

=
˘

〈c, a〉{x9,w5 ,w7,zA}
¯

.

The usual CST properties associated with the Domain operation are preserved in XST.

Consequence 7.1. Preserved Domain Properties:

(a) D� σ(R ∪R) = D� σ(R) ∪ D� σ(R),

(b) D� σ(R ∩ R) ⊆ D� σ(R) ∩ D� σ(R),

(c) D� σ(R) ∼ D� σ(R) ⊆ D� σ(R ∼ R),
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(d) R ⊆· R −→ D� σ(R) ⊆ D� σ(R),

(e) D� ∅(R) = ∅.

Definition 7.5. Re-Scope by Element: A\σ\ =
{

xw: (∃s)
(

x ∈s A & w ∈s σ )
}

.

For example: {a1, b2, c3}\{w1,v2,t3}\
= {aw, bv, ct}.

Definition 7.6. σ-Restriction: R |
σ
A =

{

zw:
(

z ∈w R
)

&
(

∃ a, s
)(

a ∈s A & a\σ\ ⊆· z & s\σ\ ⊆ w
)

}

.

Given that R
[

A
]

〈σ1,σ2〉
= D� σ2

(R |
σ1

A), the usual CST properties associated with the Image

operation are preserved in XST (see Appendix C).

8. Functions & Sets

In CST f(a) = b implies that f is a function and (using f
[

{a}
]

for CST Image) that if

x ∈ f
[

{a}
]

and y ∈ f
[

{a}
]

, then x = y = b. Application in XST has a similar reliance on Image.

Definition 8.1. Application: f(σ)(x) = f
[

x
]

σ
.

Given the above definition for instantiating a behavior through application, a more set oriented
definition of function can be provided by the following.

Definition 8.2. Function: f(σ) is a function ⇐⇒ (∀y)
(

Sing(y) & f
[

y
]

σ
6= ∅ → Sing

(

f
[

y
]

σ

) )

.

Consequence 8.1. Function Properties:

(a)
(

f ∪ g
)

(σ)
(x) = f(σ)(x) ∪ g(σ)(x),

(b)
(

f ∩ g
)

(σ)
(x) ⊆ f(σ)(x) ∩ g(σ)(x),

(c) f(σ)(x) ∼ g(σ)(x) ⊆
(

f ∼ g
)

(σ)
(x).

Example 8.1.

Given: f =
{

< a, x ><A,Z>, < b, y ><B,Y >, < c, x ><A,Z>
}

,

(a) f(σ)

(

{<a><A>}
)

= f
[

{<a><A>}
]

σ
= {<x><Z>}, & σ =<< 1 >, < 2 >>,

(b) f(τ )

(

{<x><Z>}
)

= f
[

{<x><Z>}
]

τ
= {<a><A>, <c><A>}, & τ =<< 2 >, < 1 >>,

In the above example D� σ1
(f) = {<a><A>, <b><B>, <c><A>} and D� σ2

(f) = { <x ><Z>, <y ><Y >}.
In this example, f(σ) behaves as a function from D� σ1

(f) to D� σ2
(f) with f(τ ) behaving as its

inverse, but not as a function.
When functions are defined as subsets of a Cartesian product, the ability to formalize the notion

of self-application, in the sense that f
[

f
]

6= ∅, becomes difficult to express. Since functions under
XST are not defined as subsets of a Cartesian product, the concept of self-application, in the sense
of a set acting on itself, is somewhat easier to capture. (see Appendix B)

9. Tuples & Products

The classical formulation of n-tuples, as nested sets, presents challenges when n-tuples are used
as operands[5]. The following definitions replace these old challenges with new ones.

Definition 9.1. n-Tuple: tup(x) = n ⇐⇒ x= { x1
1, x

2
2, .., x

n
n }.

This definition confines tuples to be finite, which is in keeping with the traditional use and
intent of tuples.
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Definition 9.2. Tuple Concatenation: x · y = z ⇐⇒
(∃n, m)

(

tup(x) = n & tup(y) = m & z= { x1
1, x

2
2, .., x

n
n, y

n+1
1 , yn+2

2 , .., yn+m
m }

)

EXAMPLE: 〈a, b, c, d〉 · 〈w, x, y, z〉 = 〈a, b, c, d, w, x, y, z〉.
Note: tup(x) = n & tup(y) = m −→ tup(x · y) = n + m.

Definition 9.3. XST Cross Product: A⊗ B = {(x · y)(s·t) : (x ∈s A & y ∈t B)}.

Theorem 9.4. A ⊗B⊗ C = A⊗ (B⊗C) = (A⊗ B)⊗ C.

Definition 9.5. Tag: A(a) = {{xa}{sa} : x ∈s A}. ( for s 6= ∅)

Definition 9.6. Tag: A(a) = {{xa} : x ∈s A}. ( for s = ∅)

For backward compatibility with graph-based function definitions, CST Cartesian product can
be defined so as to preserve all its CST properties.

Definition 9.7. CST Cartesian Product: A ×B = A(1) ⊗ B(2).

Definition 9.8. σ-Value: Vσ(x) = b ⇐⇒ (∀y)( 〈y〉 ∈〈σ〉 x → y = b ).

Definition 9.9. Value: V(x) = b ⇐⇒ (∀y)( 〈y〉 ∈ x → y = b ).

Example 9.1. Square root function.
√√

16 = { 〈2〉〈+〉, 〈−2〉〈−〉, 〈2i〉〈i〉, 〈−2i〉〈−i〉 }
V+(

√√
16) = 2

V−(
√√

16) = −2

Vi(
√√

16) = 2i

V−i(
√√

16) = −2i

All CST element-based functions can be represented by XST set-based functions.

Theorem 9.10. Given f ⊆· A ×B) and σ = 〈〈1〉, 〈2〉〉, f(x) = V(f(σ)({〈x〉})).

10. Relative Product

Relative Product has more personality than other operations in that given the same two
operands the resultant set can have many forms. Though, in CST the operation is rather bland
matching the range elements of the first operand with the domain elements of the second operand
and producing a pair of the domain element of the first with the range element of the second.

For example, in CST: {〈a, b〉}/{〈b, c〉} = {〈a, c〉}. Following are some element combinations
that are potentially more interesting:

1) 〈a, b〉 &〈b, c〉 −→ 〈a, c〉,
2) 〈a, b〉 &〈b, c〉 −→ 〈a, b, c〉,
3) 〈a, b〉 &〈a, c〉 −→ 〈a, b, c〉,
4) 〈a, b〉 &〈a, c〉 −→ 〈b, c〉,
5) 〈a, c〉 &〈b, c〉 −→ 〈a, b, c〉,
6) 〈a, c〉 &〈b, c〉 −→ 〈a, b〉,
7) 〈a, b, c〉 &〈x, y, c, b〉 −→ 〈b, c, a, y, b, c, x, x〉,
8) 〈a, b, c, w, v〉 &〈a, b, c, x, y, z〉 −→ 〈a, b, c, w, v, x, y, z〉.

All of the above are producible with the following definition.
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Definition 10.1. Relative Product:

F
/ 〈ω1,ω2〉

〈σ1,σ2〉
G =

{

zτ : (∃x, s, y, t)( x ∈s F & y ∈t G & x/σ
2
/ = y/ω

1
/ &

s/σ
2
/ = t/ω

1
/ & z = x/σ

1
/ ∪ y/ω

2
/ & τ = s/σ

1
/ ∪ t/ω

2
/) }.

For f
/ω

σ
g the following values for σ and ω support the corresponding mappings above.

1) σ = 〈{11}, {21}〉 & ω = 〈{11}, {22}〉,

2) σ = 〈{11}, {21}〉 & ω = 〈{11}, {12
, 23}〉,

3) σ = 〈{11
, 22}, {11}〉 & ω = 〈{11}, {23}〉,

4) σ = 〈{21}, {11}〉 & ω = 〈{11}, {22}〉,

5) σ = 〈{11}, {21}〉 & ω = 〈{21}, {12
, 23}〉,

6) σ = 〈{11}, {21}〉 & ω = 〈{21}, {12}〉,

7) σ = 〈{21
, 32

, 13}, {21
, 32}〉 & ω = 〈{41

, 32}{24
, 45

, 36
, 17

, 18}〉,

8) σ = 〈{11
, 22

, 33
, 44

, 55}, {11
, 22

, 33}〉 & ω = 〈{11
, 22

, 33}, {46
, 57

, 68}〉.

11. Composition

Composition is an act of aggregating the interactive resultant behavior of multiple processs into
a single process. Besides its categorical relevance for studying equivalent system behaviors, it can
be used constructively to produce alternative computer programs by eliminating the intermediate
operations indirectly contributing to resultant behavior. The execution of operation, h, in the
diagram below is equivalent to executing f followed by an execution of g.

A B

C

f
(σ)

h
(τ)

g
(ω)

Two problems arise. It is not obvious that h can always be defined in terms of a given f and g,
and even if it can be, it may not be of any value since processs are abstract mathematical objects
with no authority to execute on a computer,

It needs to be shown that given any two processes that are compositable there is always a
constructible composition and that the resultant process is definable in terms of appropriate sets.

Definition 11.1. Composition: g(ω) ◦ f(σ) =
(

f
/ 〈ω1, ω2〉

〈σ1, σ2〉
g

)

(〈σ1, ω2〉)
.

Theorem 11.2. For f ∈σ F [A, B), g ∈ω F [B, C) and if g(ω) ◦ f(σ) exists,

there exists h and τ such that h(τ ) = g(ω) ◦ f(σ) and h ∈τ F [A, C).

Proof: 1) f ∈σ F [A, B) =⇒ D� σ1
(f) = A & D� σ2

(f) ⊆· B

2) g ∈ω F [B, C) =⇒ D� ω1
(g) = B & D� ω2

(g) ⊆· C

3) Let h = f
/ 〈ω1 ,ω2 〉

〈σ1 ,σ2〉
g

4) For τ = 〈σ1, ω2〉, h = f
/ 〈ω1 ,τ2〉

〈τ1 ,σ2〉
g

5) g(ω) ◦ f(σ) =
(

f
/ 〈ω1, τ2〉

〈τ1, σ2〉
g

)

(τ )
= h(τ )

6) D� τ1
(h) = D� σ1

(f) = A and D� τ2
(h) = D� ω2

(g) ⊆· C → h ∈τ F [A, C).
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12. Summary

The above material defines a process to be any mechanism that accepts well-defined inputs
and produces well-defined outputs. Every computer program accepts inputs and produces out-
puts, but not always with the expected results. These programs are disqualified from being
processes by not having well-defined inputs, not having well-defined outputs, or by not having a
formal mechanism for transforming inputs to outputs. This disqualification is not surprising, since
computer programs process data representations modeled as physical objects, not as well-defined
mathematical operands.

Since all data representations have a mathematical identity (in terms of structured-sets as
supported by XST), all data representations can be managed as mathematical operands. Thus
the data management component of any computer program can qualify as a process.

Since the composition theorem (11.2) asserts that given any two processes that are compositable

there is always a constructible composition and that the resultant process is definable in terms of

appropriate sets, it is not only possible to establish reliable data management behavior, but to
also optimize the performance of that behavior.
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Appendix A. Nested Application

Though application is well defined, sequences of applications are not. Consider the simple
expression f(σ)g(ω)(x). Without proper bracketing or an explicitly defined bracketing conven-

tion, its meaning is ambiguous. There are two legitimate interpretations: f(σ)

(

g(ω)(x)
)

and
(

f(σ)(g(ω))
)

(x). The differences are explicit in the following examples.

Example A.1. Interpretations of f(σ)g(ω)(x).

(a) f(σ)

(

g(ω)(x)
)

= f
[

g
[

x
]

ω

]

σ
,

(b)
(

f(σ)(g(ω))
)

(x) =
(

f(σ)(g)
)

(ω)
(x) =

(

f
[

g
]

σ

)

[

x
]

ω
.

It may not be immediately apparent that even the simplest case has more that one valid
interpretation. Therefore it must be shown that there is a case where both interpretations are
non-empty and not equal to each other,

Example A.2. Present a case such that:

f(σ)

(

g(ω)(h)
)

6= ∅,
(

f(σ)(g(ω))
)

(h) 6= ∅ and f(σ)

(

g(ω)(h)
)

6=
(

f(σ)(g(ω))
)

(h).

Let:

f = { 〈y, z〉〈∅,∅〉, 〈a, x, b, k〉〈∅,∅,∅,∅〉 }
g = { 〈x, y〉〈∅,∅〉, 〈a, b〉〈∅,∅〉 },
p = { 〈x, k〉〈∅,∅〉 },
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h = { 〈x〉〈∅〉 }
σ = 〈〈1, 3〉, 〈2, 4〉〉,
ω = 〈〈1〉, 〈2〉〉.
D� σ1

(

f
)

= { 〈y〉〈∅〉, 〈a, b〉〈∅,∅〉 },
D� σ2

(

f
)

= { 〈z〉〈∅〉, 〈x, k〉〈∅,∅〉 },
D� ω1

(

g
)

= { 〈x〉〈∅〉, 〈a〉〈∅〉 },
D� ω2

(

g
)

= { 〈y〉〈∅〉, 〈b〉〈∅〉 }.

Then:

f(σ)

(

{〈y〉〈∅〉}
)

= {〈z〉〈∅〉}
f(σ)

(

g) = {〈x, k〉〈∅,∅〉}
g(ω)(h) = {〈y〉〈∅〉}
p(ω)(h) = {〈k〉〈∅〉} and by substitution,

f(σ)

(

g(ω)(h)
)

= f(σ)

(

{〈y〉〈∅〉}
)

= {〈z〉〈∅〉} and
(

f(σ)(g(ω))
)

(h) = p(ω)(h) = {〈k〉〈∅〉}.
Therefore, for k 6= z, f(σ)

(

g(ω)(h)
)

6=
(

f(σ)(g(ω))
)

(h).

Appendix B. Self Application

When functions are defined as subsets of a Cartesian product, the ability to formalize the notion
of self-application, in the sense that f

[

f
]

6= ∅, becomes difficult to express. Since functions under
XST are not defined as subsets of a Cartesian product, the concept of self-application, in the sense
of a set acting on itself, is somewhat easier to capture.

A simple, non-trivial example of self-application, difficult to express when functions are modeled
as objects instead of as processes, can be generated from examining the functions from a set of
cardinality 2 to itself.

Let A = {〈a〉, 〈b〉}, with g1 = {〈a, a〉, 〈b, b〉}, g2 = {〈a, a〉, 〈b, a〉}, g3 = {〈a, b〉, 〈b, a〉}, and
g4 = {〈a, b〉, 〈b, b〉}, then for σ = 〈〈1〉, 〈2〉〉 :

g1(σ)

(

{〈a〉}
)

= {〈a〉}, g1(σ)

(

{〈b〉}
)

= {〈b〉},

g2(σ)

(

{〈a〉}
)

= {〈a〉}, g2(σ)

(

{〈b〉}
)

= {〈a〉},

g3(σ)

(

{〈a〉}
)

= {〈b〉}, g3(σ)

(

{〈b〉}
)

= {〈a〉}, and

g4(σ)

(

{〈a〉}
)

= {〈b〉}, g4(σ)

(

{〈b〉}
)

= {〈b〉}.

Let f = {〈a, a, a, b, b〉, 〈b, b, a, a, b〉} and ω = 〈〈1〉, 〈1, 3, 4, 5, 2〉〉 , then
a) f(σ) = g1(σ),

b) f(ω)(f(σ)) = g2(σ),

c)
(

f(ω)(f(ω))
)

(f(σ)) = g3(σ),

d)
(

f(ω)

(

f(ω)(f(ω))
)

)

(f(σ)) = g4(σ),

Other equalities:
f(σ)

(

{〈a〉}
)

= {〈a〉}, f(σ)

(

{〈b〉}
)

= {〈b〉}, f(σ) = IA.

Notice that nothing in the definition of a function requires the resultant behavior to be functional.
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In fact, f(τ ) in example [8.1] demonstrates the case where it is not. Following is a validation of
the equations above. Recall the following definitions:

Definition B.1. Process Equivalence: f(σ) = g(γ) ⇐⇒
(

∀x
)(

f
[

x
]

σ
= g

[

x
]

γ

)

.

The above equivalence does not assert a unique mathematical identity for set membership, but
does assert a unique mathematical identity for a process.

Consequence B.1. f(σ) = g(γ) −→ D� σ1(f) = D� γ1(g) & D� σ2(f) = D� γ2(g).

Consequence B.2. f(σ) = g(γ) & g(γ) = h(τ ) −→ f(σ) = h(τ ).

Consequence B.3. Negative Properties:

(a) f(σ) = g(σ) =⇒/ f = g.

Ex: f = {< a, b, x >}, g = {< a, b, w >}, σ =<< 1 >, < 2 >> .

(b) f(σ) = f(γ) =⇒/ σ = γ.
Ex: f = {< a, b >, < b, a >}, σ =<< 1 >, < 2 >>, γ =<< 2 >, < 1 >> .

(c) f(σ) = f(γ) & g ⊂· f =⇒/ g(σ) = g(γ).
Ex: f = {< a, b >, < b, a >}, g = {< a, b >}, σ =<< 1 >, < 2 >>, γ =<< 2 >, < 1 >> .

(d) f(σ) = g(γ) & f ∈
σ
A =⇒/ g ∈

γ
A .

Ex: A = { {< a, b >}<<1>,<2>>}, B = { {< b, a >}<<2>,<1>>}, f ∈
σ
A, & g ∈

γ
B.

Definition B.2. Application: f(σ)(x) = f
[

x
]

σ
= D� σ2

(f |
σ1

x).

Definition B.3. Nested Application: f(σ)(g(ω)) =
(

f(σ)(g)
)

(ω)
=

(

f
[

g
]

σ

)

(ω)
= D� σ2

(f |
σ1

g)(ω).

For f = {〈a, a, a, b, b〉, 〈b, b, a, a, b〉}, σ = 〈〈1〉, 〈2〉〉, ω = 〈〈1〉, 〈1, 3, 4, 5, 2〉〉 and x = {〈a〉} or x = {〈b〉}.

a) f(σ)

(

{〈a〉}
)

= D� σ2
(f |

σ1

{〈a〉} )

= D� 〈2〉({〈a, a, a, b, b〉, 〈b, b, a, a, b〉}|
〈1〉
{〈a〉} )

= D� 〈2〉({〈a, a, a, b, b〉})
= {〈a〉}

b) f(σ)

(

{〈b〉}
)

= D� σ2
(f |

σ1

{〈b〉} )

= D� 〈2〉({〈a, a, a, b, b〉, 〈b, b, a, a, b〉}|
〈1〉
{〈b〉} )

= D� 〈2〉({〈b, b, a, a, b〉})
= {〈b〉}

c) f(ω)

(

{〈a〉}
)

= D� ω2
(f |

ω1

{〈a〉} )

= D� 〈1,3,4,5,2〉({〈a, a, a, b, b〉, 〈b, b, a, a, b〉}|
〈1〉
{〈a〉} )

= D� 〈1,3,4,5,2〉({〈a, a, a, b, b〉})
= {〈a, a, b, b, a〉}

d) f(ω)

(

{〈b〉}
)

= D� ω2
(f |

ω1

{〈b〉} )

= D� 〈1,3,4,5,2〉({〈a, a, a, b, b〉, 〈b, b, a, a, b〉}|
〈1〉
{〈b〉} )

= D� 〈1,3,4,5,2〉({〈b, b, a, a, b〉})
= {〈b, a, a, b, b〉}

B.1. Derivations.

a) f(σ) = g1(σ),

f(σ)

(

{〈a〉}
)

= D� σ2
(f |

σ1

{〈a〉} )
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f(σ)

(

{〈a〉}
)

= D� σ2
({〈a, a, a, b, b〉, 〈b, b, a, a, b〉} |

σ1

{〈a〉} )

f(σ)

(

{〈a〉}
)

= D� σ2
( {〈a, a, a, b, b〉} )

f(σ)

(

{〈a〉}
)

= {〈a〉} = g1(σ)

(

{〈a〉}
)

similarly, f(σ)

(

{〈b〉}
)

= {〈b〉} = g1(σ)

(

{〈b〉}
)

b) f(ω)(f(σ)) =
(

f
[

f
]

ω

)

(σ)
= D� ω2

(f |
ω1

f )(σ)

= D� ω2
(〈a, a, a, b, b〉, 〈b, b, a, a, b〉|

ω1

〈a, a, a, b, b〉, 〈b, b, a, a, b〉 )(σ)

= D� ω2
( 〈a, a, a, b, b〉, 〈b, b, a, a, b〉 )(σ)

= ( 〈a, a, b, b, a〉, 〈b, a, a, b, b〉 )(σ)

= ( 〈a, a〉, 〈b, a〉 )(σ)

= g2(σ),

c)
(

f(ω)(f(ω))
)

(f(σ)) = D� ω2
( 〈a, a, a, b, b〉, 〈b, b, a, a, b〉 )(σ)

= ( 〈a, b, b, a, a〉, 〈b, a, b, b, a〉 )(σ)

= ( 〈a, b〉, 〈b, a〉 )(σ)

= g3(σ),

d)
(

f(ω)

(

f(ω)(f(ω))
)

)

(f(σ)) = D� ω2
( 〈a, a, a, b, b〉, 〈b, b, a, a, b〉 )(σ)

= ( 〈a, b, a, a, b〉, 〈b, b, b, a, a〉 )(σ)

= ( 〈a, b〉, 〈b, b〉 )(σ)

= g4(σ).

Appendix C. Supplement Material

Given that R
[

A
]

〈σ1,σ2〉
= D� σ2

(R |
σ1

A), the usual CST properties associated with the Image

operation are preserved in XST.

Consequence C.1. Preserved Image Properties:

(a) Q
[

A ∪B
]

σ
= Q

[

A
]

σ
∪ Q

[

B
]

σ
,

(b) Q
[

A ∩ B
]

σ
⊆ Q

[

A
]

σ
∩Q

[

B
]

σ
,

(c) Q
[

A
]

σ
∼ Q

[

B
]

σ
⊆ Q

[

A ∼ B
]

σ
,

(d) A ⊆· B → Q
[

A
]

σ
⊆ Q

[

B
]

σ
,

(e) Q
[

D� σ(Q) ∩A
]

〈σ,γ〉
= Q

[

A
]

〈σ,γ〉
,

(f) Q
[

A
]

〈σ,γ〉
= D� γ(Q |

σ
A).

(g) Q
[

∅
]

σ
= ∅, ∅

[

A
]

σ
= ∅, Q

[

A
]

∅
= ∅,

(h) D� σ(Q) ∩A = ∅ → Q
[

A
]

〈σ,γ〉
= ∅,

(i) (Q ∪R)
[

A
]

σ
= Q

[

A
]

σ
∪ R

[

A
]

σ
,

(j) (Q ∩ R)
[

A
]

σ
⊆ Q

[

A
]

σ
∩ R

[

A
]

σ
,

(k) Q
[

A
]

σ
∼ R

[

A
]

σ
⊆ (Q ∼ R)

[

A
]

σ

(l) Q ⊆· R → Q
[

A
]

σ
⊆ R

[

A
]

σ
.
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Appendix D. Basic Process & Function Spaces

1-1 ONTO ON

1-1

ONTO

1-1

ON

ON

ONTO

1-1

ON

ONTO

FIGURE 1 : Process & Function Spaces (16 of 29)

SURJECTIVE

INJECTIVE

BIJECTIVE

Legend

P : ∃(1 −→ n)

F : @(1 −→ n)
∗ : @(n −→ 1)

[ : on

] : onto

P(A, B)

F (A, B)

P∗(A, B) P(A, B] P [A, B)

F ∗(A, B) F (A, B] F [A, B)

P∗(A, B] P∗[A, B) P [A, B]

F ∗(A, B] F ∗[A, B) F [A, B]

P∗[A, B]

F ∗[A, B]

The above represents the lattice of process spaces with basic refinments imposed. For a detailed
graphic of the 29 refinements of process spaces, see Appendix E.
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Appendix E. Totally Refined Process Spaces

[ ON

] ONTO

> many-to-one

− one-to-one
< one-to-many

P
>−<

(A,B)P
>−<

(A,B)

P
>−<

(A, B]P
>−<

(A, B] P
>−<

[A, B)P
>−<

[A, B)

P
>−<

[A, B]P
>−<

[A, B]

P
><

(A, B)P
><

(A, B)

P
><

(A, B]P
><

(A, B] P
><

[A, B)P
><

[A, B)

P
><

[A, B]P
><

[A, B]

P
−<

(A, B)P
−<

(A, B)

P
−<

(A, B]P
−<

(A, B] P
−<

[A, B)P
−<

[A, B)

P
−<

[A, B]P
−<

[A, B]

F
>−

(A, B)F
>−

(A, B)

F
>−

(A, B]F
>−

(A, B] F
>−

[A, B)F
>−

[A, B)

F
>−

[A, B]F
>−

[A, B]

F
>

(A, B)F
>

(A, B)

F
>

(A,B]F
>

(A,B] F
>

[A, B)F
>

[A, B)

F
>

[A, B]F
>

[A, B]

F
−

(A, B)F
−

(A, B)

F
−

(A,B]F
−

(A,B] F
−

[A, B)F
−

[A, B)

F
−

[A, B]F
−

[A, B]

P
<

(A,B)P
<

(A,B)

P
<

(A, B]P
<

(A, B] P
<

[A, B)P
<

[A, B)

P
<

[A, B]P
<

[A, B]

∅∅

Refined Spaces: Process (29), Non-Empty Function (12).


