— XSP Technology D L Childs

[XSP-TAP: 08/27/07]

XSP TECHNOLOGY: Theory & Practice
Formal Modeling & Practical Implementation of XML & RDM Systems

INTRODUCTION

XSP (extended set processing) Technology introduces: [1] a formal mathematical foundation, ex-
tended set theory, XST, for defining and mapping user application expectations into internal ma-
chine representations; and [2] practical software implementations based on XST that assist in the
design, development, and use of XML and RDM systems.

It is common knowledge that RDM advocates tout the mathematically superiority of the RDM
because of its grounding in set theory. In point of fact, the RDM works in spite of set theory, not
because of it. It is also common knowledge that XML devotees make no claim of any kind that
XML-Structures and operations on these structures have any formal counterpart in set theory, yet
they do. In this paper the formal foundations of RDM and XML systems will be examined in
the light of XST to provide practical relevance of XSP Technology to the field of software systems
development.

It is very important to understand that a deep knowledge and understanding of XST was required
to develop the existing software, but it is also equally important to understand that no knowledge
nor understanding of the mathematics of XST is required to use XSP software.

Need For a Theory

Every technology must have a sound underlying theory to support the consistency and predictability
of the methods promoted by the technology. In this context, the term theory is respected as an
articulation of a body of rules governing the relationships and behavior of objects in a specific
system of interest.

Unfortunately, within the discipline of software development, the term theory is often considered
synonymous with speculative, unproven, impracticable, and is generally viewed as antithetical to
the pragmatic reality of systems implementation.

One might wonder why a formal underlying theory is revered by one discipline for guidance, control,
and understanding, but that the very mention of a theory is shunned by another discipline as being
irrelevant, impracticable, and unproductive.

For implementing software systems the answer is quite simple - no theory is known to have been
discovered that allows a formal modeling of the actual computer environment, where all software
ultimately resides to be executed. Without such a formal model there can be no language for
expressing any applicable formal theory.

This is not to say that formal models do not exist in the field of software development. They
abound at modeling the world external to the computer, and abstract characterizations of machine
behavior, but none venture to faithfully model the actual internal environment of the computer,
until now. XSP Technology is based on just such a formal model.

So why has a formal model been so difficult to find? What exactly is the formal model introduced by
XSP Technology, and now that such a formal model exists (hence a theory, thus a technology) why
is it of any practical value for implementing better systems, particularly XML and RDM systems?

Copyright @ 2007 INTEGRATED INFORMATION SYSTEMS . ANN ARBOR Ml . iis@umich.edu

Deficient Mathematical Foundations

The unlikely culprit that has been thwarting the discovery of a formal foundation to modeling
computer based systems is the deficiency of adequate mathematical support. The existing body
of accepted formal mathematics is inadequate to meet the modeling needs required to formally
describe the user application environment, the internal machine environment, and embeddings of
application expectations into executable realizations. This incredulous assertion, obviously, needs
to be amplified.

It is well known that the basic building block of all computer implementations is the record. It is
also well known exactly what is meant by the term record. Given records [a, b, c] and [x,b,y, z],
anyone with a background in computers knows that b is the ‘second place element’ of both records.

To provide a formal model of records, the notation of set theory is generally employed giving:
< a,b,c>and < z,b,y, z >, which seems to preserve the notion that b is the ‘second place element’
of both n-tuples. Unfortunately, according to accepted set-theoretic definitions of membership, b is
not even an element of either n-tuple.

The use of the ‘set-theoretic notation’ for an n-tuple has to be carefully distinguished from the use
of the ‘set-theoretic membership condition’ of an n-tuple. When used to represent a record, the
former is just a notational homage to set theory while the later is an actual use of set theory. The
former works, the later fails. This failure is due to a deficiency in the foundations of set theory.
The ‘set-theoretic membership condition’ of n-tuple is not well defined by any classical set theory.

In the RDM records are equated to n-tuples. The fact, that the RDM works as well as it does,
is because the underlying Relational Algebra is defined using an intelligent interpretation of how
n-tuples behave, instead of a rigorous set-theoretic adherence to n-tuple behavior.

Records & n-Tuples

There exits a fundamental problem when the set-theoretic notation for n-tuples is used to model
records. There is no problem with records per se. The problem is in trying to formally model
records with set theory, ANY set theory. If set theory were not used to model records, there would
be no problem.

The problem arises because set theory requires that n-tuples be defined as sets. Since n-tuples are
sets, they must have well-defined membership conditions and must exhibit meaningful behavior
when operated on by set operations, such as: < a,b>N<a,c>and <a,b,c>U<z,y,2 >.

All set theories depend on the ability to determine if a ‘membership condition’ is TRUE or FALSE.

For records, though they are not sets, this is quite simple:
1) is @ a member of the record [a, b, ¢|? Answer: YES.
2) is b a member of the record [a, b, ¢|? Answer: YES.
3) is ¢ a member of the record [a, b, ¢|7 Answer: YES.

If records are modeled by n-tuples (thus as sets) where [a, b, ¢] is equated with < a, b, ¢ >, then:
4) is a a member of the n-tuple < a,b, ¢ >?7 Answer: ?
5) is b a member of the n-tuple < a, b, ¢ >7 Answer: ?
6) is ¢ a member of the n-tuple < a, b, ¢ >7 Answer: ?

In short, there is no problem with the concept of records, but there is a problem with the concept
of n-tuples. The problem exists in set theory, since in set theory n-tuples are not universally and
unambiguously well-defined. Within certain restricted uses, n-tuples behave very well. In the
general context of set theory n-tuples behave very badly, simple because it is not always clear how
to determine if an element is or is not a member of any given n-tuple. If the issue of membership

does not arise, n-tuples are well-behaved - by default, since no behavior is required of them.

Though formal set-theoretic fundamentals are not required, nor even relevant, for using software
derived from XSP Technology, a healthy insight can be gained from a brief exposure to subtle
problems caused by trying to model the programming concept of a record with the set-theoretic
concept of n-tuple. (A more brain wrenching set-theoretic exposure can be found in [ref. 1-4].)

It is rumored that Edison knew 10,000 ways not to make a light bulb work. They may all be of
some academic interest, but the only one of practical interest is one that does work. Similarly with
the set-theoretic definition of an n-tuple. The only set-theoretic definition of n-tuple that is of any
practical interest is one that does work.

‘Work’ in this context means that operations on n-tuples behave as any intelligent person would
expect them to behave, and not with the bazaar behavior they generally exhibit under classical
set-theoretic definitions. More specifically, we would like a set-theoretic definition of n-tuple that
formally reflected our intuitive notion of how records behave. From the previous example, it would
mean that a, b, and ¢ are members of the n-tuple < a,b,c >, and that < a,b,¢c > N < z,b,z >
would somehow result in a set that has b as the second and only element, something like < —, b, — >.

Classical Sets & Extended Sets

The formal development of Axiomatic Extended Set Theory [ref. 4] provides all the necessary
mathematical machinery to achieve the above results, and more. Unfortunately, the arcane math-
ematical development obscures the simple underlying notation that makes it ‘work’. That simple
notion will now be exposed.

In Classical Set Theory, CST, set membership is defined in terms of a single condition, element.
In Extended Set Theory, XST, set membership is defined in terms of two conditions. element and
scope. Both terms, element and scope, are undefined mathematical primitives that can assume any
meaning that one wants to bestow on them. They have NO intrinsic meaning in and of themselves.
Any terms could have been chosen as long as they are used consistently. This mathematical
disclaimer having been said, of course the terms were chosen to reflect that ‘elements’ are going to
be considered to be items of interest and that ‘scopes’ are going to be considered as an associated
property of an element. The following examples will illustrate these two membership conditions.

In CST the notation A = {a, {b}, C'} means that a is an element of A, {b} is an element of A, and
C is an element of A. While in XST the notation B = {a", {b*}!, C“} means that a is an r-element
of B, {b°} is a t-element of B, and C is a u-element of B.

The elements of A and B are exactly the same though the membership conditions are different,
since B also has scope values r, ¢, and u. A is a CST set and therefore has no scope values.
However, every CST set can be transformed into a XST set by assigning every element in a CST
set a null scope. Thus A becomes the XST set {a?, {b?}9, C?}.

n-tuples in XST

Since scopes can be anything that an element can be, including sets themselves, scopes can be
chosen to be integers. Thus the set {a', %, c?} is well defined in XST. As are the sets {x!, b2, 23}
and {b%}. Tt should be noted that the following also holds:

{a', 0%,y n{al 0% 2%} = {0},
Thus, an obvious notational choice of the concept of an n-tuple is the following;:

_ 1 .2 .3 n
< X1, T2 T3y ey Ty > = {17, 2%, 237, oy 2")

It then follows that:
<abyc>N<xbz>= {b’}.

Armed with this XST definition for n-tuple, all the intuitive notations about the behavior of records
can be preserved when modeled by n-tuple notation. This also allows anomalies in the RDM to be
corrected and would legitimize the bragging rights of the RDM as being mathematically sound. As
is shown below and more extensively in [ref.5], a more exotic use of scopes also provides a formal
foundation for processing XML-Structures.

Before continuing, however, it should be stressed that the concept of scopes is not just a notational
slight-of-hand that can be supported by any existing set theory. It isn’t and it can’t. For a better
understand of this, please appeal to [ref. 4].

The Power of Scopes

Classical sets, by definition, are unstructured collections of elements. Where the elements them-
selves can also be sets. By contrast, extended sets can be viewed as classical sets with structure.
This concept of a ‘structured set’ is no more an oxymoron than is the term ‘multi-valued-function’.
So, in a naive way, scopes can be considered to add structure to sets. What that structure is,
depends on the choice of scope values. The choice of integers, though obvious, is not necessarily
the only choice with practical ramifications for software development.

Any subset of a computer memory can be faithfully modeled by an extended set, where the elements
of the set are byte values and the scopes of the elements are memory addresses. As simple as this
example might be, it is an example of a component of the internal machine environment that
now has a legitimate mathematical model. True that the notation is not new, but the underlying
membership is now unambiguous. Thus two subsets of RAM can now be treated with mathematical
rigor: their intersections, unions, symmetric differences, and relative complements are now well-

defined.

By extending set operations beyond their usual reliance on elements only, and considering scope
relationships (like every i + 4 value), then projections and selections can be legitimately defined
on subsets of memory. Certainly, there are computer programs that already do this, but now
there can be computer programs that have a rigorous mathematical model to ensure consistency
and reliability. If eliminating the possibility of erratic and inconsistent behavior while ensuring
scaleability is not practical - what is?

XSP software as developed over the last 30 years has encapsulated the mathematical soundness of
record modeling by n-tuples so that even the mathematically challenged can benefit from mathe-
matically sound software implementations.

Until recently, XSP software as focused on supporting mathematically sound relational algebra
operations at the I/O interface, but with the discovery that XML-structures could also be made
mathematically sound under XST, new XSP software operations have been developed to support
the querying and processing of XML-structures. How XML zealots can claim the same bragging
rights for mathematical soundness as do RDM zealots is presented in the following section.

XML Tags as XST Scopes

The mathematical foundation for RDM systems is based on the concept of an n-tuple, which is
falsely believed to be mathematically well-defined. The mathematical foundation for XML systems,
for all intents and purposes, is not known to exist and therefore, by default, is falsely believed to be
not mathematically well-defined. As it turns out the very nature of an XML-structure ensures that
it is mathematically well-defined, under XST. Since n-tuples also depend on XST in order to be

mathematically well-defined, this puts XML-structures on a mathematical par with RDM-relations.
In fact, it can be shown that XML-structures are mathematically richer than RDM-relations and
contrary to RDM lore, RDM-relations can be absorbed by XML-structures. (see ref. [5])

The reason XML-structures turn out to be mathematically sound can be shown by comparison to
HTML-structures which are not intrinsically mathematically sound. XML-structures are ‘properly
nested’” HTML structures are not necessarily ‘properly nested’. As an example {[a]} is a proper
nesting. {[a}] is not a proper nesting.

RDM-relations draw on one set-theoretic property: sequencing. XML-structures draw on two set-
theoretic properties: sequencing and nesting. In CST these to properties usurp one another in that
one is used to define the other. In XST these two properties are independent of each other.

For example: In CST the cardinality of { < a,b >, {{a}, {a,b}} } is 1.
In XST the cardinality of { < a,b >, {{a}, {a,b}} } is 2.

The following is a very simple XML-structure:
< P>
<p>
<n> Alan < /n >
<a>42< /a>
< e > abc.com < [e >
</p>
<p>
<n>Mary < /n>
<a>29
< e > mky.com < [e >
</p>
< /P>

Which could be represented by:

p — {{Alan<1’">, 42<29> ghe.com<3e> Y<IP> £ Mary<tn> | 29<29> iy com<Se> }<2,p>}‘

When XML tags are embedded in XST scopes, XML-structures become well-defined extended sets,
(ref. [5]). Since existing XSP software already relies on scopes to support structures internal to
the machine environment, it is a relatively easy task to extend the existing software to support
structures external to the machine environment, like XML-structures captured as extended sets.

XSP Software

XSP software provides a low level functionally complete query support and data access capability
that can out perform any existing commercial RDMS in processing XML data. The XSP software
has already been shown to out perform existing RDBMSs in processing flat file relational data, as
demonstrated using a well known standard benchmark.

XSP software takes the form of a set of function calls for processing XML-structures. These calls can
be executed interactively, or called from C programs. XSP software can be used to augment existing
systems or as ‘what if’ software for experimenting with development approaches and performance
issues that would otherwise be too expensive and time consuming to explore.

XSP software description:
* Low level primitive functions for manipulating XML-structures
* Functions are extensions of the Relational Algebra
* No knowledge of set theory is required to use the functions
* Strong Data Independent interface between application and storage

The XSP functions can be viewed as extensions of the Relational Algebra that treat XML Tags
as XST Scopes and XML elements as XST elements. These XSP functions are XML-complete, in
the sense that they support any Relational Algebra type functionality definable in terms of XPath,
XQuery, SQL, QUILT, X777, on any structure, or mixed collection of structures, that are well-
formed by XML standards or by RDM standards. This includes all XML-structures, DTDs, RDF's,
RDM-Relations, etc.. These XSP functions provide ‘tangible proof’ that a mathematically sound,
operation-centric foundation exists for XML processing.

XSP software has been ported to all major mainframe and PC operating systems and now provides
the capability to augment existing systems in the exploration and access of heterogeneous and
distributed data for real time applications or for assisting in design and system development.

References

1. [Ch68] Childs, D L: Feasibility of a Set-Theoretic Data Structure: A General Structure Based
on a Reconstituted Definition of Relation, Proc. IFIP Congress, Edinburgh Scotland, 1968

2. [Ch77] Childs, D L: Extended Set Theory: A General Model for Very Large, Distributed, Back-
end Information Systems, Third International Conference On Very Large Databases, Tokyo,
Japan, 1977

3. [Ch86] Childs, D L: A Mathematical Foundation For Systems Development, NATO ASI Series,
Vol F24, Database Machines, Edited by A. K. Sood and A. H. Qureshi, Springer-Verlag, 1986

4. [Ch00] Childs, D L: Aziomatic Extended Set Theory, 2000

5. [ChO1] Childs, D L: XSP Technology for XML Systems Design & Development, 2001

